

Hilti HIT-RE 500 with rebar in hammer drilled holes

Injection mortar system		Benefits
411L-TF-1 1-111L-TF-1 1-1	Hilti HIT-RE 500 330 ml foil pack	suitable for non-cracked concrete C 20/25 to C 50/60 high loading capacity
Hills HIT-RE 500 Hills HIT-RE 500	(also available as 500 ml and 1400 ml	suitable for dry and water saturated concrete under water application
HIRD HIT-RE SOO HIRD HIT-RE SOO	foil pack)	- large diameter applications
	Statik mixer	long working time at elevated temperatures
		- odourless epoxy
	rebar BSt 500 S	- embedment depth range: from 60 160 mm for Ø8 to 128 640 mm for Ø32

Small edge distance and spacing

Variable embedment depth

European Technical Approval

CE conformity

PROFIS Anchor design software

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European technical approval a)	DIBt, Berlin	ETA-04/0027 / 2009-05-20

a) All data given in this section according ETA-04/0027, issue 2009-05-20.

Basic loading data (for a single anchor)

All data in this section applies to

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- Steel failure
- Base material thickness, as specified in the table
- One typical embedment depth, as specified in the table
- One anchor material, as specified in the tables
- Concrete C 20/25, f_{ck,cube} = 25 N/mm²
- Temperate range I
 - (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)
- Installation temperature range +5°C to +40°C

For details see Simplified design method

Embedment depth ^{a)} and base material thickness for the basic loading data. Mean ultimate resistance, characteristic resistance, design resistance, recommended loads.

		Data according ETA-04/0027, issue 2009-05-20							Additional Hilti tech. data		
Anchor size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36	Ø40
Typical embedment depth [mm]	80	90	110	125	125	170	210	270	300	330	360
Base material thickness [mm]	110	120	145	165	165	220	275	340	380	420	470

a) The allowed range of embedment depth is shown in the setting details. The corresponding load values can be calculated according to the simplified design method.

Mean ultimate resistance: concrete C 20/25 - f_{ck,cube} = 25 N/mm², anchor rebar BSt 500S

			ı	Data according ETA-04/0027, issue 2009-05-20								Additional Hilti tech. data	
Anchor size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36	Ø40
Tensile N _{Ru,m}	BSt 500 S	[kN]	29,4	45,2	65,1	89,3	94,1	149,2	204,9	298,7	349,9	403,6	459,9
Shear V _{Ru,m}	BSt 500 S	[kN]	14,7	23,1	32,6	44,1	57,8	90,3	141,8	177,5	232,1	293,9	362,9

Characteristic resistance: concrete C 20/25 - fck.cube = 25 N/mm², anchor rebar BSt 500 S

			Data according ETA-04/0027, issue 2009-05-20							Additional Hilti tech. data			
Anchor size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36	Ø40
Tensile N _{Rk}	BSt 500 S	[kN]	28,0	42,4	58,3	70,6	70,6	111,9	153,7	224,0	262,4	302,7	344,9
Shear V _{Rk}	BSt 500 S	[kN]	14,0	22,0	31,0	42,0	55,0	86,0	135,0	169,0	221,0	279,9	345,6

Design resistance: concrete C 20/25 - fck,cube = 25 N/mm², anchor rebar BSt 500 S

			ı	Data according ETA-04/0027, issue 2009-05-20							Additional Hilti tech. data		
Anchor size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36	Ø40
Tensile N _{Rd}	BSt 500 S	[kN]	14,4	20,2	27,7	33,6	33,6	53,3	73,2	106,7	125,0	144,2	164,3
Shear V _{Rd}	BSt 500 S	[kN]	9,3	14,7	20,7	28,0	36,7	57,3	90,0	112,7	147,3	186,6	230,4

Recommended loads a): concrete C 20/25 - f_{ck,cube} = 25 N/mm², anchor rebar BSt 500 S

			ı	Data according ETA-04/0027, issue 2009-05-20							Addit Hilti da	tech.	
Anchor size			Ø8 Ø10 Ø12 Ø14 Ø16 Ø20 Ø25 Ø28 Ø32					Ø36	Ø40				
Tensile N _{rec}	BSt 500 S	[kN]	10,3	14,4	19,8	24,0	24,0	38,1	52,3	76,2	89,3	103,0	117,3
Shear V _{rec}	BSt 500 S	[kN]	6,7	10,5	14,8	20,0	26,2	41,0	64,3	80,5	105,2	133,3	164,6

a) With overall partial safety factor for action γ = 1,4. The partial safety factors for action depend on the type of loading and shall be taken from national regulations.

Service temperature range

Hilti HIT-RE 500 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	-40 °C to +40 °C	+24 °C	+40 °C
Temperature range II	-40 °C to +58 °C	+35 °C	+58 °C
Temperature range III	-40 °C to +70 °C	+43 °C	+70 °C

Max short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Materials

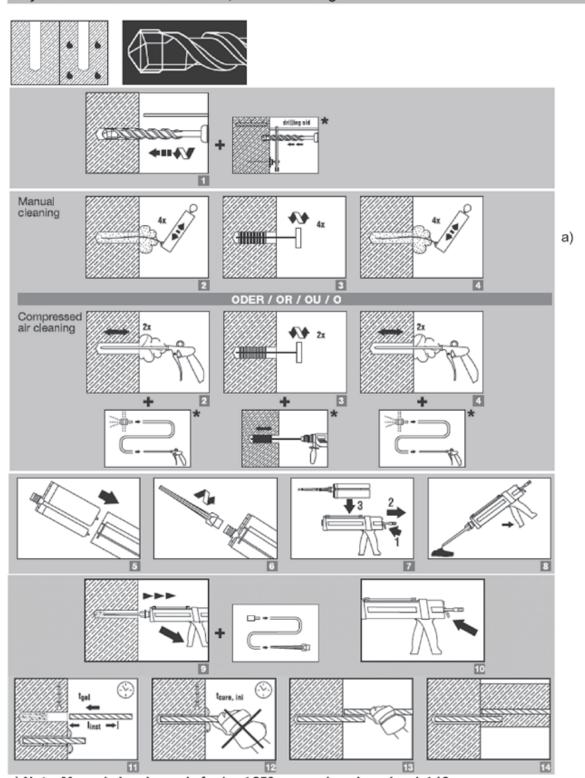
Mechanical properties of rebar BSt 500S

			ı	Data according ETA-04/0027, issue 2009-05-20						Additional Hilti tech. data			
Anchor size	е		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36	Ø40
Nominal tensile strength f _{uk}	BSt 500 S	[N/mm²]	550	550	550	550	550	550	550	550	550	550	550
Yield strength f _{yk}	BSt 500 S	[N/mm²]	500	500	500	500	500	500	500	500	500	500	500
Stressed cross- section A _s	BSt 500 S	[mm²]	50,3	78,5	113,1	153,9	201,1	314,2	490,9	615,8	804,2	1018	1257
Moment of resistance W	BSt 500 S	[mm³]	50,3	98,2	169,6	269,4	402,1	785,4	1534	2155	3217	4580	6283

Material quality

Part	Material
rebar	Geometry and mechanical properties according to DIN 488-2:1986 or
BSt 500 S	E DIN 488-2:2006

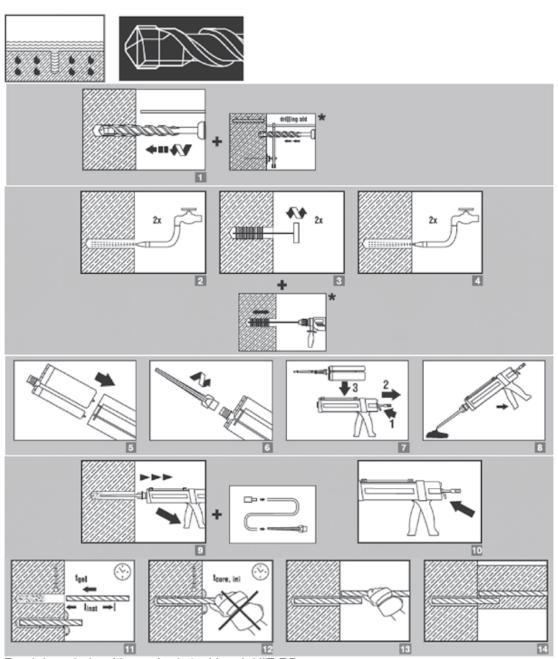
Setting


installation equipment

Anchor size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36
Rotary hammer	TE 2 – TE 16				TE 40 – TE 70					
Other tools	compressed air gun or blow out pump, set of cleaning brushes, dispenser						enser			

Setting instruction

Dry and water-saturated concrete, hammer drilling


a) Note: Manual cleaning only for h_{cf} ≤ 250 mm and anchor size d ≤ 16mm

Brush bore hole with required steel brush HIT-RB

For detailed information on installation see instruction for use given with the package of the product.

Water filled bore hole or submerged, hammer drilling

Brush bore hole with required steel brush HIT-RB

For detailed information on installation see instruction for use given with the package of the product.

Curing time for general conditions

Data acc	ording ETA-04/0027, issue 2	2009-05-20	Additional Hilti technical data
Temperature of the base material	Working time in which anchor can be inserted and adjusted t _{gel}	Preparation work may continue. Do not apply design load. t _{cure, ini}	
40 °C	12 min	4 h	2 h
30 °C to 39 °C	12 min	8 h	4 h
20 °C to 29 °C	20 min	12 h	6 h
15 °C to 19 °C	30 min	24 h	8 h
10 °C to 14 °C	90 min	48 h	12 h
5 °C to 9 °C	120 min	72 h	18 h

For dry concrete curing times may be reduced according to the following table. For installation temperatures below +5 °C all load values have to be reduced according to the load reduction factors given below.

Curing time for dry concrete

	Additional Hilt	i technical data	
Temperature of the base material	Reduced curing time before anchor can be fully loaded t _{cure,dry}	Working time in which anchor can be inserted and adjusted t _{gel}	Load reduction factor
40 °C	4 h	12 min	1
30 °C	8 h	12 min	1
20 °C	12 h	20 min	1
15 °C	18 h	30 min	1
10 °C	24 h	90 min	1
5 °C	36 h	120 min	1
0 °C	50 h	3 h	0,7
-5 °C	72 h	4 h	0,6

Setting details

				Data a	ccordii	ng ETA	-04/002	27, issı	ue 200	9-05-20)	Hilti	tional tech. ata
Anchor size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36	Ø40
Nominal diameter of drill bit	d ₀	[mm]	12	14	16	18	20	25	32	35	40	45	55
Effective anchorage and drill hole depth	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128	144	160
range a)	$h_{\text{ef},\text{max}}$	[mm]	160	200	240	280	320	400	500	560	640	720	800
Minimum base material thickness	h _{min}	[mm]		30 mm 0 mm				ŀ	n _{ef} + 2 c	l _o			
Minimum spacing	Smin	[mm]	40	50	60	70	80	100	125	140	160	180	200
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160	180	200
Critical spacing for splitting failure	S _{cr,sp}							2 c _{cr,sp}					
			1,0 · h	ef	for h	/ h _{ef} ≥ 2	2,0		h/h _{ef}	Į			
Critical edge distance for splitting failure b)	C _{cr,sp}	[mm]	4,6 h _e	_f - 1,8 h	for 2	,0 > h /	h _{ef} > 1,	,3	1,3				
			2,26 h	ef	for h	/ h _{ef} ≤	1,3		+	1,0	h _{ef} 2,	26-h _{ef}	C _{cr,sp}
Critical spacing for concrete cone failure	S _{cr,N}							2 c _{cr,N}					
Critical edge distance for concrete cone failure c)	C _{cr,N}							1,5 h _{ef}					
			L L			S)					

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

- a) h_{ef,min} ≤ h_{ef} ≤ h_{ef,max} (h_{ef}: embedment depth)
- b) h: base material thickness (h ≥ h_{min})
- c) The critical edge distance for concrete cone failure depends on the embedment depth h_{ef} and the design bond resistance. The simplified formula given in this table is on the save side.

Simplified design method

Simplified version of the design method according ETAG 001, TR 029. Design resistance according data given in ETA-04/0027, issue 2009-05-20.

- Influence of concrete strength
- Influence of edge distance
- Influence of spacing

Valid for a group of two anchors. (The method may also be applied for anchor groups with more than two anchors or more than one edge distance. The influencing factors must then be considered for each edge distance and spacing. The calculated design loads are then on the save side: They will be lower than the exact values according ETAG 001, TR 029. To avoid this, it is recommended to use the anchor design software PROFIS anchor)

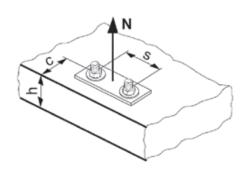
The design method is based on the following simplification:

No different loads are acting on individual anchors (no eccentricity)

The values are valid for one anchor.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

Tension loading


The design tensile resistance is the lower value of

- Steel resistance: N_{Rd}
- Combined pull-out and concrete cone resistance:

$$N_{Rd,p} = N^0_{Rd,p} \cdot f_{B,p} \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,p} \cdot f_{re,N}$$

- Concrete cone resistance: $N_{Rd,c} = N_{Rd,c}^0 \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$
- Concrete splitting resistance (only non-cracked concrete):

$$N_{Rd,sp} = N^0_{Rd,c} \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,N} \cdot f_{re,N}$$

Basic design tensile resistance

Design steel resistance N_{Rd,s}

			ı	Data ad	ccordir	ng ETA	-04/002	27, issı	ıe 2009	9-05-20)	Addit Hilti da	tech.
Ancho	or size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36	Ø40
$N_{Rd,s}$	BSt 500 S	[kN]	20,0	30,7	44,3	60,7	79,3	123,6	192,9	242,1	315,7	400	494

Design combined pull-out and concrete cone resistance a)

 $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{B,p} \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,p} \cdot f_{re,N}$

				Data according ETA-04/0027, issue 2009-05-20									
Ancho	r size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36	Ø40
Typica h _{ef,typ} [ı	l embedment depth mm]		80	80 90 110 125 125 170 210 270 300						330	360		
N ⁰ _{Rd,p}	Temperature range I	[kN]	14,4	14,4 20,2 29,6 36,7 41,9 71,2 102,1 147,0 186,7							192,8	216,1	
N ⁰ _{Rd,p}	Temperature range II	[kN]	11,5 16,2 23,7 31,4 32,9 56,0 86,4 113,1 143,6 1					154,2	172,9				
N ⁰ _{Rd,p}	Temperature range III	[kN]	6,7 9,4 13,8 18,3 20,9 33,1 51,1 67,9 86,2						92,5	103,7			

a) Additional Hilti technical data (not part of ETA-04/0027, issue 2009-05-20):

The design values for combined pull-out and concrete cone resistance may be increased by 20 % for anchor installation in dry concrete (concrete not in contact with water before/during installation and curing).

Design concrete cone resistance ^{a)} $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$ Design splitting resistance $N_{Rd,sp}$ ^{a)} = $N^0_{Rd,c} \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,N} \cdot f_{re,N}$

										Addit Hilti da	tech.	
Anchor size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36	Ø40	
$N^0_{Rd,c}$ [kN]	17,2	7,2 20,5 27,7 33,6 33,6 53,3 73,2 106,7 125,									144,2 164,3	

a) Additional Hilti technical data (not part of ETA-04/0027, issue 2009-05-20):

The design values for concrete cone and splitting resistance may be increased by 20 % for anchor installation in dry concrete (concrete not in contact with water before/during installation and curing).

Influencing factors

Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_{B,p} = (f_{ck,cube}/25N/mm^2)^{0,1} a)$	1	1,02	1,04	1,06	1,07	1,08	1,09

a) f_{ck,cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of embedment depth on combined pull-out and concrete cone resistance

$$f_{h,p} = h_{ef}/h_{ef,typ}$$

Influence of concrete strength on concrete cone resistance

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2}$	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck.cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of edge distance a)

c/c _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
c/c _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,0	0,7	0,0	0,5	'
$f_{1,N} = 0,7 + 0,3 \cdot c/c_{cr,N}$	0,73	0.76	0,79	0,82	0,85	0,88	0,91	0.94	0,97	1
$f_{1,sp} = 0.7 + 0.3 \cdot c/c_{cr,sp}$	0,73	0,70	0,73	0,02	0,00	0,00	0,31	0,54	0,37	
$f_{2,N} = 0,5 \cdot (1 + c/c_{cr,N})$	0,55	0.60	0,65	0,70	0,75	0,80	0,85	0.90	0,95	1
$f_{2,sp} = 0.5 \cdot (1 + c/c_{cr,sp})$	0,55	0,00	0,05	0,70	0,75	0,00	0,00	0,90	0,95	'

a) The the edge distance shall not be smaller than the minimum edge distance c_{min} given in the table with the setting details. These influencing factors must be considered for every edge distance smaller than the critical edge distance.

Influence of anchor spacing a)

s/s _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$f_{3,N} = 0,5\cdot(1 + s/s_{cr,N})$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1
$f_{3,sp} = 0,5 \cdot (1 + s/s_{cr,sp})$	0,55	0,00	0,00	0,70	0,75	0,00	0,00	0,90	0,55	•

a) The anchor spacing shall not be smaller than the minimum anchor spacing s_{min} given in the table with the setting details. This influencing factor must be considered for every anchor spacing.

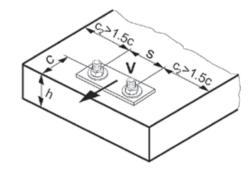
Influence of embedment depth on concrete cone resistance

$$f_{h,N} = (h_{ef}/h_{ef,typ})^{1,5}$$

Influence of reinforcement

h _{ef} [mm]	40	50	60	70	80	90	≥ 100
$f_{re,N} = 0.5 + h_{ef}/200 \text{mm} \le 1$	0,7 a)	0,75 a)	0,8 ^{a)}	0,85 a)	0,9 a)	0,95 ^{a)}	1

a) This factor applies only for dense reinforcement. If in the area of anchorage there is reinforcement with a spacing ≥ 150 mm (any diameter) or with a diameter ≤ 10 mm and a spacing ≥ 100 mm, then a factor f_{re} = 1 may be applied.


Shear loading

The design shear resistance is the lower value of

Steel resistance: V_{Rd,s}

. Concrete pryout resistance: $V_{Rd,cp} = k \cdot \text{lower value of } N_{Rd,p} \text{ and } N_{Rd,c}$

- Concrete edge resistance: $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_B \cdot f_h \cdot f_4 \cdot f_{hef} \cdot f_c$

Basic design shear resistance

Design steel resistance V_{Rds}

	<u> </u>	ru,s		Data according ETA-04/0027, issue 2009-05-20									
Ancho	or size		Ø8	Ø8 Ø10 Ø12 Ø14 Ø16 Ø20 Ø25 Ø28 Ø3									ita Ø40
$V_{Rd,s}$	BSt 500 S	[kN]	9,3	14,7	20,7	28,0	36,7	57,3	90,0	112,7	147,3	186,6	230,4

Design concrete pryout resistance $V_{Rd,cp}$ = lower value^{a)} of $k \cdot N_{Rd,p}$ and $k \cdot N_{Rd,c}$

k = 1 for $h_{ef} < 60$ mm k = 2 for $h_{ef} \ge 60$ mm

a) N_{Rd,p}: Design combined pull-out and concrete cone resistance

N_{Rd,c}: Design concrete cone resistance

Design concrete edge resistance $V_{Rd,c} = V^0_{Rd,c} \cdot f_B \cdot f_b \cdot f_h \cdot f_4 \cdot f_{hef} \cdot f_c$

Anchor size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø36	Ø40
Non-cracked concrete												
V ⁰ _{Rd,c}	[kN]	5,9	8,6	11,6	15,0	18,7	27,0	39,2	47,3	59,0	71,7	85,5

Influencing factors

Influence of concrete strength

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2 a})$	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of angle between load applied and the direction perpendicular to the free edge

Angle ß	0°	10°	20°	30°	40°	50°	60°	70°	80°	≥ 90°
$f_{\beta} = \sqrt{\frac{1}{(\cos \alpha_{\nu})^{2} + \left(\frac{\sin \alpha_{\nu}}{2.5}\right)^{2}}}$	1	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

Influence of base material thickness

h/c	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2	1,35	≥ 1,5
$f_h = \{h/(1,5 \cdot c)\}^{1/2} \le 1$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

Influence of anchor spacing and edge distance ^{a)} for concrete edge resistance: $f_4 = (c/h_{ef})^{1,5} \cdot (1 + s / [3 \cdot c]) \cdot 0,5$

c/h _{ef}	Single	Group of two anchors s/h _{ef}														
C/Tlef	anchor	0,75	1,50	2,25	3,00	3,75	4,50	5,25	6,00	6,75	7,50	8,25	9,00	9,75	10,50	11,25
0,50	0,35	0,27	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
0,75	0,65	0,43	0,54	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1,00	1,00	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,25	1,40	0,84	0,98	1,12	1,26	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
1,50	1,84	1,07	1,22	1,38	1,53	1,68	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84
1,75	2,32	1,32	1,49	1,65	1,82	1,98	2,15	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32
2,00	2,83	1,59	1,77	1,94	2,12	2,30	2,47	2,65	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
2,25	3,38	1,88	2,06	2,25	2,44	2,63	2,81	3,00	3,19	3,38	3,38	3,38	3,38	3,38	3,38	3,38
2,50	3,95	2,17	2,37	2,57	2,77	2,96	3,16	3,36	3,56	3,76	3,95	3,95	3,95	3,95	3,95	3,95
2,75	4,56	2,49	2,69	2,90	3,11	3,32	3,52	3,73	3,94	4,15	4,35	4,56	4,56	4,56	4,56	4,56
3,00	5,20	2,81	3,03	3,25	3,46	3,68	3,90	4,11	4,33	4,55	4,76	4,98	5,20	5,20	5,20	5,20
3,25	5,86	3,15	3,38	3,61	3,83	4,06	4,28	4,51	4,73	4,96	5,18	5,41	5,63	5,86	5,86	5,86
3,50	6,55	3,51	3,74	3,98	4,21	4,44	4,68	4,91	5,14	5,38	5,61	5,85	6,08	6,31	6,55	6,55
3,75	7,26	3,87	4,12	4,36	4,60	4,84	5,08	5,33	5,57	5,81	6,05	6,29	6,54	6,78	7,02	7,26
4,00	8,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00	6,25	6,50	6,75	7,00	7,25	7,50	7,75
4,25	8,76	4,64	4,90	5,15	5,41	5,67	5,93	6,18	6,44	6,70	6,96	7,22	7,47	7,73	7,99	8,25
4,50	9,55	5,04	5,30	5,57	5,83	6,10	6,36	6,63	6,89	7,16	7,42	7,69	7,95	8,22	8,49	8,75
4,75	10,35	5,45	5,72	5,99	6,27	6,54	6,81	7,08	7,36	7,63	7,90	8,17	8,45	8,72	8,99	9,26
5,00	11,18	5,87	6,15	6,43	6,71	6,99	7,27	7,55	7,83	8,11	8,39	8,66	8,94	9,22	9,50	9,78
5,25	12,03	6,30	6,59	6,87	7,16	7,45	7,73	8,02	8,31	8,59	8,88	9,17	9,45	9,74	10,02	10,31
5,50	12,90	6,74	7,04	7,33	7,62	7,92	8,21	8,50	8,79	9,09	9,38	9,67	9,97	10,26	10,55	10,85

a) The anchor spacing and the edge distance shall not be smaller than the minimum anchor spacing s_{min} and the minimum edge distance c_{min} .

Influence of embedment depth

h _{ef} /d	4	4,5	5	6	7	8	9	10	11
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	0,51	0,63	0,75	1,01	1,31	1,64	2,00	2,39	2,81
h _{ef} /d	12	13	14	15	16	17	18	19	20

Influence of edge distance a)

c/d	4	6	8	10	15	20	30	40
$f_c = (d / c)^{0.19}$	0,77	0,71	0,67	0,65	0,60	0,57	0,52	0,50

a) The edge distance shall not be smaller than the minimum edge distance c_{min} .

Combined tension and shear loading

For combined tension and shear loading see section "Anchor Design".