PÔVODNÝ NÁVOD NA POUŽÍVANIE

Tachymeter POS 15/18

Pred uvedením do prevádzky si bezpodmiennečne prečítajte návod na obsluhu.

Tento návod na obsluhu odkladajte vždy spolu s prístrojom.

Pred odovzdaním prístroja iným osobám sa presvedčite, že návod na obsluhu je jeho súčasťou.

Čísla odkazujú vždy na obrázky. Obrázky k textu nájdete na rozkladacích stranách. Pri študovaní návodu ich majte vždy otvorené.

V texte tohto návodu na obsluhu sa pojmom "prístroj" vždy označuje tachymeter POS 15 alebo POS 18.

Časti krytu vzadu

1 Priehradka na akumulátor vľavo s uzatváracou skrutkou
2 Nastavovacia skrutka trojnožky
3 Aretácia trojnožky
4 Ovládaci panel s dotykovou obrazovkou
5 Zaostrovacia skrutka
6 Okular
7 Dalekohlád s meračom vzdialenosti
8 Príezor na približné zacielenie

Časti krytu vzadu

1 Priehradka na akumulátor vpravo s uzatváracou skrutkou
2 Vertikálny pohon
3 Rozhriatie USB, dvojité (mate a veľké)
4 Priehradka na akumulátor vpravo s uzatváracou skrutkou
5 Horizontálny pohon, prípadne pohon do strán
6 Nastavovacia skrutka trojnožky
7 Trojnožka
8 Laserová olovnica
9 Pomoc pri navádzaní
10 Objektív
11 Transportná rukoväť

Obsah

1 Všeobecné informácie ..298
 1.1 Signálne slová a ich význam298
 1.2 Význam pictogramov a ďalšie pokyny299
2 Opis ..299
 2.1 Používanie v súlade s určeným účelom299
 2.2 Opis prístroja ..299
 2.3 Do rozsahu dodávky štandardnej výbavy patria300
3 Príslušenstvo ...300
4 Technické údaje ...302
5 Bezpečnostné pokyny ...303
 5.1 Základné bezpečnostné upozornenia303
 5.2 Používanie v rozpočte s určeným účelom využitia303
 5.3 Správne vybavenie pracovisk304
 5.4 Elektromagnetická tolerancia304
 5.4.1 Klasifikácia laseru pre prístroje triedy 2304
 5.4.2 Klasifikácia laseru pre prístroje triedy 3R304
 5.5 Všeobecné bezpečnostné opatrenia304
 5.6 Preprava ..305
6 Opis systému ..305
 6.1 Všeobecné pojmy305
 6.1.1 Súradnice ...305
 6.1.2 Stavebné osi ..305
 6.1.3 Špecifické odborné pojmy306
6.1.3 Measured data

- 6.1.3.1 Measured data with a scale
- 6.1.3.2 Measured data with a tick mark

6.2 Distance Measurement

- 6.2.1 Principles of measurement
- 6.2.2 Double-base compensator

6.3 Distance Measurement

- 6.3.1 Distance measurement
- 6.3.2 Bases
- 6.3.3 Reflective target
- 6.4 Measurement range
- 6.5 Help with measurement
- 6.6 Laserpointer
- 6.7 Datum body
- 6.7.1 Datum point

7 First Steps

- 7.1 Accumulator
- 7.2 Charging the accumulator
- 7.3 Measurement and replacement of the accumulator
- 7.4 Control function
- 7.5 Control panel
- 7.5.1 Functional display
- 7.5.2 Large target
- 7.5.3 Division of the target
- 7.5.4 Numeral tactile key
- 7.5.5 Numeral tactile key
- 7.5.6 Numerical display - visual control indicators
- 7.5.7 Indication status Laserpointer
- 7.5.8 Indication status accumulator
- 7.6 Turning on/off
- 7.6.1 Turn on
- 7.6.2 Turn off
- 7.7 Setting the device
- 7.7.1 Setting the point
- 7.7.2 Setting the target
- 7.7.3 Setting the laser pointer
- 7.8 Application Teodolit
- 7.8.1 Setting the target on the laser pointer
- 7.8.2 Manual setting of distance
- 7.8.3 Setting the distance to the zero point
- 7.8.4 Indication of the visible line

8 Setting the System

- 8.1 Configuration
- 8.1.1 Setting
- 8.2 Date and time

9 Function Selection (FNC)

- 9.1 Navigation
- 9.2 Laserpointer
- 9.3 Light display
- 9.4 Electronic library
12.2 Dáta bodov ... 374
12.2.1 Body ako meracie body 374
12.2.2 Body ako body súradníce .. 374
12.2.3 Body s grafickými prvkami .. 375
12.3 Vytváranie dát bodov ... 375
12.3.1 S tachymetrom ... 375
12.3.2 S programom Hilti PROFIS Layout .. 375
12.4 Pamäť dát .. 375
12.4.1 Internálna pamäť tachymetra .. 375
12.4.2 Pamäťové médium USB .. 376
13 Správa dát tachymetra .. 376
13.1 Prehľad .. 376
13.2 Výber projektu ... 376
13.2.1 Fixné body (kontrolné body a body vytýčenia) 377
13.2.2 Meracie body ... 378
13.3 Vymazanie projektu ... 380
13.4 Vytvorenie nového projektu .. 381
13.5 Kopírovanie projektu .. 381
14 Výmena dát s PC ... 381
14.1 Úvod .. 381
14.2 Hilti PROFIS Layout .. 382
14.2.1 Typy dát ... 382
14.2.2 Výstup dát v programe Hilti PROFIS Layout (export) 382
14.2.3 Vstup dát do programu Hilti PROFIS Layout (import) 383
15 Kalibrácia a nastavenie .. 383
15.1 Kalibrácia v teréne .. 383
15.2 Vykonanie kalibrácie v teréne .. 384
15.3 Kalibráčný servis Hilti .. 386
16 Údržba a ošetrovanie ... 387
16.1 Čistenie a sušenie .. 387
16.2 Skladovanie .. 387
16.3 Preprava .. 387
17 Likvidácia .. 387
18 Záruka výrobcu prístrojov .. 388
19 Upozornenie FCC (platné v USA) / upozornenie IC (platné v Kanade) .. 388
20 Vyhlásenie o zhode ES (originál) ... 389

1 Všeobecné informácie

1.1 Signálne slová a ich význam

NEBEZPEČENSTVO
Na označenie bezprostredne hrozíaceho nebezpečenstva, ktoré môže spôsobiť ťažký úraz alebo usmrtenie.

VÝSTRAHA
V prípade možnej nebezpečnej situácie, ktorá môže viesť k ťažkým poraneniam alebo k usmrteniu.

POZOR
V prípade možnej nebezpečnej situácie, ktorá by mohla viesť k ťažkým zraneniam osôb alebo k vecným škodám.
1.2 Význam piktogramov a ďalšie pokyny

Symboly

Pred použitím si prečítajte návod na používanie

Všeobecná výstraha pred nebezpečenstvom

Odpad odovzdajte na recykláciu

Nedivajte sa do lúča

Skrutku neskrutkujte

Symboly triedy lasera II / trieda 2

Laser triedy II podľa CFR 21, § 1040 (FDA)

Nedivajte sa do lúča

Laser triedy II podľa normy EN 60825:2008

Symboly triedy lasera III / trieda 3

Laser triedy III podľa CFR 21, § 1040 (FDA)

Nedivajte sa do lúča alebo sa vyhýbajte priamemu pohľadu do lúču cez optickej prístroje

Otvor na výstup laserového lúča

Otvor na výstup laserového lúča

Otvor na výstup laserového lúča

Umiestnenie identifikačných detailov na prístroji

Typové označenie asériové číslo sú uvedené na typovom štítku vášho prístroja. Tieto údaje si poznačte do svojho návodu na používanie a uvádzajte ich, kedykoľvek požadujete informácie od našich zastúpení alebo servisných stredisk.

Typ:

Generácia: 01

Sériové číslo:

2 Opis

2.1 Používanie v súlade s určeným účelom

Prístroj je určený na meranie vzdialeností a smerov, vypočítač pozícií cieľa v troch dimenziách a odvedených hodnôt, ako aj vytvárenie daných súradníc alebo hodnôt vzťahujúcich sa na osi.

Na výlučenie rizika úrazu používajte iba originálne príslušenstvo a nástroje Hilti.

Dodržujte pokyny na používanie, ošetrenie a údržbu, uvedené v návode na používanie.

Manipulácia alebo zmeny na prístroji nie sú dovolené.

2.2 Opis prístroja

S tachometrom Hilti POS 15/18 sa dajú určovať objekty ako pozícia v priestore. Prístroj obsahuje vodorovný a zvislý kruh s digitálnym rozdelením kruhu, dve elektro- nické libely (kompenzátor), koaxiálny merac vzdušných údajov v dalekohľade, ako aj procesor na výkonanie vypočetov a ukladanie dát.

Na prenos dát medzi tachometrom a PC a opačne, na úpravu dát a ich odovzdávanie do iných systémov je k dispozícii PC-softvér Hilti PROFIS Layout.
2.3 Do rozsahu dodávky štandardnej výbavy patria:

1. Tachometer
2. Sieťový adaptér vrátené kábla na nabíjačku
1. Nabíjačka
2. Akumulátory typu Li-Ion 3,8 V 5200 mAh
1. Reflektorová výtyčka
1. Nastavovací kľúč POW 10
2. Varovné štítky pre laser
1. Certifikát výrobcu
1. Návod na používanie
1. Kufr Hilti
1. Voliteľne: Hilti PROFIS Layout (CD-ROM s PC-sofprovom)
1. Voliteľne: Konektor ochrany pred kopiírovaním pre PC-sofprov
1. Voliteľne: Dátový kábel USB

3 Príslušenstvo

<table>
<thead>
<tr>
<th>Obrázok</th>
<th>Označenie</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Akumulátor POA 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sieťový adaptér POA 81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nabíjačka POA 82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflektorová výtyčka POA 50 (s metrickými jednotkami), pozostávajúca zo štyroch tyčových prvkov (s dĺžkou po 300 mm), hrotu výtyčky (s dĺžkou 50 mm) a platničky s reflektorm (s výškou 100 mm, prípadne vzdialenosťou 50 mm od stredu), slúži na meranie bodov na podlahe.</td>
<td></td>
</tr>
<tr>
<td>Obrázok</td>
<td>Označenie</td>
<td>Opis</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Reflektorová výtyčka POA 51 (s imperiálnymi jednotkami), pozostávajúca zo štyroch tyčových prvkov (s dĺžkou po 12 palcov), hrotu výtyčky (s dĺžkou 2,03 palca) a platničky s reflektorom (s výškou 3,93 palca, prípadne vzdialenosťou 1,97 palca od stredu), slúži na meranie bodov na podlahe.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samolepiaca fólia na umiestnenie referenčných bodov na výšešené ciele, ako sú múry alebo stĺpy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nastavovací klúč POW 10 Môže používať iba odborný personál!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aplikačný softvér, ktorý slúži na vytváranie poziciíčnich bodov z údajov CAD a na ich prenos do prístroja.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dátový kábel POW 90</td>
<td></td>
</tr>
</tbody>
</table>

Obrázok
Reflektorová výtyčka (s imperiálnymi jednotkami) POA 51

Opis
Reflektorová výtyčka POA 51 (s imperiálnymi jednotkami), pozostávajúca zo štyroch tyčových prvkov (s dĺžkou po 12 palcov), hrotu výtyčky (s dĺžkou 2,03 palca) a platničky s reflektorom (s výškou 3,93 palca, prípadne vzdialenosťou 1,97 palca od stredu), slúži na meranie bodov na podlahe.

Opis
Samolepiaca fólia na umiestnenie referenčných bodov na výšešené ciele, ako sú múry alebo stĺpy.

Opis
Nastavovací klúč POW 10 Môže používať iba odborný personál!

Opis
Aplikačný softvér, ktorý slúži na vytváranie poziciíčnich bodov z údajov CAD a na ich prenos do prístroja.

Opis
Dátový kábel POW 90
4 Technické údaje

UPOZORNENIE

Až na presnosť merania uhlov sa obidva prístroje navzájom neodlišujú.

<table>
<thead>
<tr>
<th>Dálekoľahad</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zväčšenie dálekoľahadu</td>
<td>30x</td>
</tr>
<tr>
<td>Najkrajšia vzdialenosť pri cienení</td>
<td>1,5 m (4,9 ft)</td>
</tr>
<tr>
<td>Zorné pole dálekoľahadu</td>
<td>1° 20' : 2,3 m / 100 m (7,0 ft / 300 ft)</td>
</tr>
<tr>
<td>Otvor objektívu</td>
<td>45 mm (1,8")</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompenzátor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>2 osi, kvapalina</td>
</tr>
<tr>
<td>Pracovný rozsah</td>
<td>±3'</td>
</tr>
<tr>
<td>Presnosť</td>
<td>2"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meranie uhlov</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Presnosť POS 15 (DIN 18723)</td>
<td>5'</td>
</tr>
<tr>
<td>Presnosť POS 18 (DIN 18723)</td>
<td>3'</td>
</tr>
<tr>
<td>Systém snímania uhlov</td>
<td>diametrálny</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meranie vzdialeností</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosah</td>
<td>340 m (1 000 ft) Kodak, sivá 90 %</td>
</tr>
<tr>
<td>Presnosť</td>
<td>±3 mm + 2 ppm (0,01 ft + 2 ppm)</td>
</tr>
<tr>
<td>Trieda lasera</td>
<td>Trieda 3R, viditeľný lúč, 630–680 nm, Po < 4,75 mW, 1 ~ 320–400 MHz (EN 60825-1/ IEC 60825-1); class III (CFR 21 § 1040 (FDA))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pomoc pri navádzaní</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Uhol rozbiehavosti</td>
<td>1,4°</td>
</tr>
<tr>
<td>Typický dosah</td>
<td>70 m (230 ft)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laserová olovnica</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Presnosť</td>
<td>1,5 mm na 1,5 m (1/16 na 3 ft)</td>
</tr>
<tr>
<td>Trieda lasera</td>
<td>Trieda 2, viditeľný lúč, 635 nm, Po < 10 mW (EN 60825-1/ IEC 60825-1); class II (CFR 21 § 1040 (FDA))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pamäť dát</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Veľkosť pamäte (dátové bloky)</td>
<td>10 000</td>
</tr>
<tr>
<td>Pripojka na prenos dát</td>
<td>Host and Client, 2x USB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displej</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>Farebný displej (dotyková obrazovka) 320 x 240 pix.</td>
</tr>
<tr>
<td>Osvetlenie</td>
<td>5-stupňové</td>
</tr>
<tr>
<td>Kontrast</td>
<td>Prepínač klíčový režim pre deň / noc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trieda ochrany IP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trieda</td>
<td>IP 56</td>
</tr>
</tbody>
</table>
Bočné pohony

<table>
<thead>
<tr>
<th>Typ</th>
<th>nekonečné</th>
</tr>
</thead>
</table>

Závit na statív

<table>
<thead>
<tr>
<th>Závit trojnožky</th>
<th>5/8"</th>
</tr>
</thead>
</table>

Akumulátor POA 80

<table>
<thead>
<tr>
<th>Typ</th>
<th>lítium-iónový</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menové napätie</td>
<td>3,8 V</td>
</tr>
<tr>
<td>Kapacita akumulátora</td>
<td>2000mAh</td>
</tr>
<tr>
<td>Čas nabijania</td>
<td>4 h</td>
</tr>
<tr>
<td>Čas prevádzky (pri meraními vzdialenosti / uhlov káždých 30 sekúnd)</td>
<td>16 h</td>
</tr>
<tr>
<td>Hmotnosť</td>
<td>0,1 kg (0,2 libry)</td>
</tr>
<tr>
<td>Rozmery</td>
<td>67 mm x 39 mm x 25 mm (2,6" x 1,5" x 1,0")</td>
</tr>
</tbody>
</table>

Sieťový adaptér POA 81 a nabíjačka POA 82

Napájanie elektrickým prúdom	100...240 V
Nabíjanie	47...63 Hz
Menovitý prúd	4 A
Menovité napätie	5 V
Hmotnosť (sieťový adaptér POA 81)	0,25 kg (0,5 libry)
Hmotnosť (nabíjačka POA 82)	0,06 kg (0,1 libry)
Rozmery (sieťový adaptér POA 81)	105 mm x 85 mm x 40 mm (4,1" x 3,3" x 1,6")
Rozmery (nabíjačka POA 82)	105 mm x 57 mm x 37 mm (4,1" x 2,2" x 1,5")

Teplota

| Prevalúcia teplota | -20... +50 °C (-4 °F až +122 °F) |
| Skladovacia teplota | -30... +70 °C (-22 °F až +158 °F) |

Rozmery a hmotnosti

| Rozmery | 149 mm x 145 mm x 306 mm (5,9" x 5,7" x 12") |
| Hmotnosť 43 | 4,0 kg (8,8 libry) |

5 Bezpečnostné pokyny

5.1 Základné bezpečnostné upozornenia

Okrem bezpečnostno-technických upozornení uvedených v jednotlivých kapitolách tohto návodu na obsluhu sa vždy musia striktné dodržiavať nasledujúce nariadenia.

5.2 Používanie v rozpore s určeným účelom využitia

Ak bude prístroj alebo jeho pridavné zariadenia nesprávne používať nekvalifikovaný personál alebo ak sa prístroj bude používať v rozpore s predpísaným účelom jeho využitia, môže dôjsť k vzniku nebezpečenstva.

- **a) Prístroj nikdy nepoužívajte bez dodržiavania príslušných inštrukcií alebo bez prečítania tohto návodu.**
- **b) Nevyraďujte z činnosti žiadne bezpečnostné zaťaženia a neodstraňujte žiadne výstražné štítky a štítky s upozornením.**
- **c) Prístroj čiavajte opravovať iba do servisných stredísk Hilti. Pri neodbornom otváraní prístroja môže...**
Zabráňte prístupu detí k laserovým prístrojom.

1. Správne vybavenie pracovisk
 a) Zaistite miesto merania a pri umiestňovaní prístroja dbajte na to, aby lúč nesmeroval na vás alebo na iné osoby.
 b) Používajte prístroj len v rámci definovaných hraníc nepoľa. Pri displeje miestnosti môžu byť dané vytvorenie škarmu, využívaného na zobrazenie. Preto môžu byť vytvorené ohrozenia.

2. Všeobecné bezpečnostné opatrenia
 a) Pred použitím prístroja skontrolujte, či je poštovené a je zobrazenie správne nastavené.
 b) Dodržiavajte prevádzkovú teplotu a teplotu skla.
 c) Keď prístroj prenášate z veľmi chladného prostredia, nechajte ho vysychať.

5.4 Elektromagnetická tolerancia
 I kedy prístroj súťaží so širším spektrum prístrojov, môže sa vyskytnúť zráz príslušných fázie.
 5.4.1 Klasifikácia laserových prístrojov
 a) Nezabíjajte lúč na zahájená, ktoré sa neskorá nočná časť.
 b) Používajte prístroj len v našitate alebo v našitate oči.

5.4.2 Klasifikácia laserových prístrojov
 a) Prístroje triedy lasera 3R a triedy IIIa by mali obsluhuť človeka len v našitate alebo v našitate oči.
 b) Používajte prístroj len v našitate alebo v našitate oči.

5.4.3 Klasifikácia laserových prístrojov
 a) Prístroje triedy lasera 3R a triedy IIIa by mali byť používané len v našitate alebo v našitate oči.
 b) Používajte prístroj len v našitate alebo v našitate oči.

5.4.4 Klasifikácia laserových prístrojov
 a) Prístroje triedy lasera 3R a triedy IIIa by mali byť používané len v našitate alebo v našitate oči.
 b) Používajte prístroj len v našitate alebo v našitate oči.

5.5 Všeobecné bezpečnostné opatrenia
 a) Pred začiatkom práce sa porovnajte s predchádzajúcim článkom.
 b) Dodržiavajte prevádzkovú teplotu a teplotu skla.
 c) Po páde alebo pôsobení iného mechanického vplyvu skontrolujte presnosť prístroja.

5.6 Všeobecné bezpečnostné opatrenia
 a) Podľa príslušných predpisov sa môže zobrazenie stroja sa zmeniť.
 b) Dodržiavajte prevádzkovú teplotu a teplotu skla.
 c) Po páde alebo pôsobení iného mechanického vplyvu skontrolujte presnosť prístroja.
 d) Keď prístroj prenášate z veľmi chladného prostredia, nechajte ho vysychať.
 e) Pri použití sa môže vynásledkom poškodenia stroja sa zmení.

5.7 Všeobecné bezpečnostné opatrenia
 a) Podľa príslušných predpisov sa môže zobrazenie stroja sa zmeniť.
 b) Dodržiavajte prevádzkovú teplotu a teplotu skla.
 c) Po páde alebo pôsobení iného mechanického vplyvu skontrolujte presnosť prístroja.
 d) Keď prístroj prenášate z veľmi chladného prostredia, nechajte ho vysychať.
 e) Pri použití sa môže vynásledkom poškodenia stroja sa zmení.

5.8 Všeobecné bezpečnostné opatrenia
 a) Podľa príslušných predpisov sa môže zobrazenie stroja sa zmeniť.
 b) Dodržiavajte prevádzkovú teplotu a teplotu skla.
 c) Po páde alebo pôsobení iného mechanického vplyvu skontrolujte presnosť prístroja.
 d) Keď prístroj prenášate z veľmi chladného prostredia, nechajte ho vysychať.
 e) Pri použití sa môže vynásledkom poškodenia stroja sa zmení.
k) Kryt priestoru na akumulátor starostlivo zaistite, aby akumulátor nemohol vypadnúť alebo aby ne-
mohol vzniknúť kontakt, v dôsledku ktorého by sa prístroj neúmyselne vypol, čo by malo za následok stratu dát.

5.6 Preprava
Pri zasielaní prístroja izolujte akumulátory alebo ich vy-
berite z prístroja. Vytekajúce batérie/akumulátor môžu prístroj poškodiť. Aby nedochádzalo k poškodzovaniu životného prostre-
dia, musíte sa pri likvidácii prístroja a akumulátorov/batérií riadiť platnými miestnymi predpismi. V prípade pochybnosti oslovte výrobcu.

6 Opis systému
6.1 Všeobecné pojmy

6.1.1 Súradnice
Na niektorých stavbách označí geodetická firma namiesto stavebných osí alebo aj v kombinácii s nimi aj ďalšie body a ich pozíciu zapiše prostredníctvom súradníc. Súradnice sú vo všeobecnosti založené na systéme súradníc krajiny, na ktorom sú vo všetkých prípadoch založené aj mapy.

6.1.2 Stavebné osi

Pred začiatkom stavby zvyčajne vyznačí geodetická spoločnosť najprv na mieste stavby a v jej okolí výškové značky a stavebné osi. Pre každú stavebnú os sa na zemi vyznačia dva konce. Od týchto značiek sa umiestňujú jednotlivé stavebné prvky. Pri všetkých budovách je dostupný väčší počet stavebných osí.
6.1.3 Špecifické odborné pojmy

Osi prístroja

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Cieľová os</td>
</tr>
<tr>
<td>b</td>
<td>Zvislá os</td>
</tr>
<tr>
<td>c</td>
<td>Sklopňa os</td>
</tr>
</tbody>
</table>

Vodorovný kruh/vodorovný uhol

Z nameraných hodnôt oddielaných na vodorovnom kruhu 70° k jednému cieľu a 30° k druhému cieľu možno vypočítať zvienený uhol 70° - 40° = 30°.
Tým, že zvislý kruh je vyrovnaný na 0° k smeru gravitácie alebo na 0° k horizontálnemu smeru, sú tu uhly v podstate určené smerom gravitácie.

S týmito hodnotami sú horizontálna vzdialenosť a výškové rozdiely vypočítané z nameranej šikmej vzdialenosť.

6.1.4 Polohy dalekohľadu

Aby bolo možné odčítané hodnoty na vodorovnom kruhu správne priradiť k zvislému uhlí, hovoríme o polohách dalekohľadu. Tzn., že podľa smeru dalekohľadu voči ovládacímu panelu možno určiť, v ktorej "polohe" sa meralo.

Ked máte priamo pred sebou displej a okulár, nachádzá sa prístroj v polohe dalekohľadu 1.
Ked máte priamo pred sebou displej a objektív, nachádzá sa prístroj v polohe dalekohľadu 2.

6.1.5 Pojmy a ich opisy

<table>
<thead>
<tr>
<th>Čiastočná os</th>
<th>Línia prechádzajúca nitkovým krížom a stredom objektívu (os dalekohľadu).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klopná os</td>
<td>Os otáčania dalekohľadu.</td>
</tr>
<tr>
<td>Zvislá os</td>
<td>Os otáčania celého prístroja.</td>
</tr>
<tr>
<td>Zenit</td>
<td>Zenit je smer príťažlivosti nahor.</td>
</tr>
<tr>
<td>Horizon</td>
<td>Horizon je smer kolmý k zemskej príťažlivosti – všeobecne sa označuje ako horizontálny (vodorovný).</td>
</tr>
<tr>
<td>Nádier</td>
<td>Nádier je smer zemskej príťažlivosti dolu.</td>
</tr>
<tr>
<td>Zvislý kruh</td>
<td>Ako zvislý kruh sa vyznačuje kruh na odčítanie uhlín, hodnoty ktorého sa menia, keď sa dalekohľad pohybuje nahor alebo nadol.</td>
</tr>
<tr>
<td>Zvislý smer</td>
<td>Ako zvislý smer sa označuje odčítaná hodnota na zvislom kruhu.</td>
</tr>
<tr>
<td>Vertikálny uhol (Vu)</td>
<td>Vertikálny uhol pozostáva z odčítania na zvislom kruhu. Vertikálny kruh sa váčšinou vyrovna v smere zemskej príťažlivosti pomocou kompenzátoru, "odčítaním nilovej hodnoty" v zenite.</td>
</tr>
<tr>
<td>Výškové uhol</td>
<td>Pri výškových uhlohoch je "nula" určená horizontom, kladne sa smerom nahor aj záporné dolu.</td>
</tr>
<tr>
<td>Horizonálny kruh</td>
<td>Ako vodorovný kruh sa označuje kruh na odčítanie uhlín, hodnoty ktorého sa menia, keď sa prístroj otáča.</td>
</tr>
<tr>
<td>Vodorovný smer</td>
<td>Ako vodorovný smer sa označuje odčítaná hodnota na vodorovnom kruhu.</td>
</tr>
<tr>
<td>Horizonálny uhol (Hu)</td>
<td>Horizonálny uhol je dany rozdielom dvoch odčítaných hodnôt na vodorovnom kruhu, ale často sa ako uhol označuje aj jedna hodnota odčítaná na kruhu.</td>
</tr>
</tbody>
</table>
Šikmá vzdialenosť (Sv)
Vzdialenosť od stredu ďalekohľadu až po laserový lúč, narážajúci na cieľovú plochu.

Horizontálna vzdialenosť (Hv)
Nameraná šikmá vzdialenosť zredukovaná na horizontálku.

Aghiáda
Aghiáda je prostredná otočná časť tachymetra. Sučasťou tejto časti bývajú bežné ovládacie panel, libely na vyrovnanie do horizontálnej polohy a vo vnútri vodorovný kruh.

Trojnožka
Prístroj stojí na trojnožke, ktorú možno upraviť napr. na statív. Trojnožka má tri dosadacie body, ktoré možno zvislo nastavovať pomocou nastavovacích skrutiek.

Stanica prístroja
Miesto, na ktorom je prístroj nainštalovaný - váčšinou nad vyznačeným bodom na zemi.

Výška stanice (Stan Výš)
Výška bodu na zemi so stanicou s prístrojom nad referenčnou výškou.

Výška prístroja (Vl)
Výška od bodu na zemi až po stred ďalekohľadu.

Výška reflektora (Vr)
Výška stredu reflektora k hrotu reflektorovej výšky.

Orientačný bod
Cieľový bod v spojitosti so stanicou s prístrojom, služiaci na určenie horizontálneho referenčného merania horizontálnych uhlov.

EDM
Elektronický merací zařízení.

Východná suradnica (Vých)
V typickom systéme suradníc prevádzať predné smer v prípade východ - západ.

Severná suradnica (Sev)
V typickom systéme suradníc prevádzať predné smer sever - juh.

Dĺžka (Ln)
Toto je označenie pre rozmery dĺžky pozdĺž stavebnej osi alebo inej referenčnej linie.

Priečka (Offs)
Toto je označenie pre vzdialenosť v pravom uhle voči stavebnej osi alebo inej referenčnej linie.

Výška (Výš)
Pojmom výška sa označuje viacero hodnôt. Výška je vertikálna vzdialenosť k referenčnému bodu alebo k referenčnej ploche.

6.1.6 Skratky a ich významy

<table>
<thead>
<tr>
<th>Skratka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu</td>
<td>Horizontálny (vodorovný) uhol</td>
</tr>
<tr>
<td>Vu</td>
<td>Vertikálny uhol</td>
</tr>
<tr>
<td>dHu</td>
<td>Delta – horizontálny (vodorovný) uhol</td>
</tr>
<tr>
<td>dVu</td>
<td>Delta – vertikálny uhol</td>
</tr>
<tr>
<td>Sv</td>
<td>Šikmá vzdialenosť</td>
</tr>
<tr>
<td>Hv</td>
<td>Horizontálna vzdialenosť</td>
</tr>
<tr>
<td>dhv</td>
<td>Delta – horizontálna vzdialenosť</td>
</tr>
<tr>
<td>Vi</td>
<td>Výška prístroja</td>
</tr>
<tr>
<td>Vr</td>
<td>Výška reflektora</td>
</tr>
<tr>
<td>Ref. výška</td>
<td>Výška referenčného bodu</td>
</tr>
<tr>
<td>Stan Výš</td>
<td>Výška stanice</td>
</tr>
<tr>
<td>Výš</td>
<td>Výška</td>
</tr>
<tr>
<td>Vých</td>
<td>Východná suradnica</td>
</tr>
<tr>
<td>Sev</td>
<td>Severná suradnica</td>
</tr>
<tr>
<td>Offs</td>
<td>Priečka (Prieč.)</td>
</tr>
<tr>
<td>Ln</td>
<td>Dĺžka</td>
</tr>
<tr>
<td>dvýš</td>
<td>Delta – výška</td>
</tr>
<tr>
<td>dvých</td>
<td>Delta – východná suradnica</td>
</tr>
</tbody>
</table>
6.2 Systém merania uhlov

6.2.1 Princíp merania

Prístroj určuje uhol prepočtom, vždy z dvoch odčítaní kruhu.
Na meranie vzdialeností sú prostredníctvom viditeľného laserového lúča vysielané meracie vlny, ktoré sa odrazia na objekte.
Z týchto fyzikálnych prvkov sa získujú vzdialenosti.

Pomocou elektronickej loby (kompenzátorov) sa získajú sklony prístroja a korigujú sa odčítania kruhu a vykonáva sa aj vypočítaný meranie štandardnej vzdialenosti, horizontálnej vzdialenosti a výškového rozdielu.

Pomocou zabudovaného výpočtového procesora sa dajú všetky jednotky vzdialeností ako metrické metry a tzv. imperiálny systém stôp, yardov, palcov a pod. konvertovať a prostredníctvom digitálnejho rozdelenia kruhu je možné znázorniť rôzne uhlové jednotky, ako napríklad 360° šesťdesiatinné delenie ("°") alebo jednotky Gon (g), kde celý kruh má 400 g dielikov na stupnici.

6.2.2 Dvojosový kompenzátor

Kompenzátor je v princípe nivelácneho systému, napríklad elektronické loby, na určenie výškového sklonu osi tachymetra.

S použitím dvojosového kompenzátora sa zvyškové sklony v pozdĺžnom a priečnom smere dajú určiť s veľkou presnosťou.
Matematická korekcia zaručuje, že zvyškové sklony nemajú žiadny vplyv na merania uhlov.

6.3 Meranie vzdialenosti

6.3.1 Meranie vzdialenosti

Meranie vzdialenosti sa vykonáva pomocou viditeľného laserového lúča, ktorý vystupuje zo stredu objektívu, čo znamená, že merač vzdialenosti je koaxiálny.
Laserový lúč meria na “normálnych” povrchoch bez pomoci špecifického reflektora. Normálnymi povrchmi sú všetky neodržkádajúce povrchy, ktoré môžu byť úplne nerovné či drsné. Dosah je závislý od schopnosti odrazu od cieľového povrchu, čo znamená, že len málo odrážajúce povrchy, ako sú povrchy modréj, červenej, zelenej farby, môžu spôsobiť určité straty v oblasti dosahu.

S prístrojom sa dodáva reflektorová výtyčka s nalepenou reflexnou fóliou. Meranie na reflexnej fólii poskytuje kvalitné meranie vzdialenosti aj pri veľkých dosahoch. Reflektorová výtyčka dodatočne umožňuje meranie vzdialenosti na bodech na zemi.

UPOZORNENIE
Pravidelne kontrolujte nastavenie (vyrovnanie) viditeľného laserového meracieho lúča voči cieľovej osi. V prípade, že je potrebné nastavenie či vyrovnanie alebo ak si nie ste istí, odolášte prístroj do najbližšieho servisného strediska spoločnosti Hilti.

6.3.2 Ciele

S meracím lúčom je možné vykonávať meranie na akornkoťvek neveľa stojacom cieli. Při meraní vzdialenosti je potrebné dávať pozor na to, aby sa počas merania vzdialenosti nepohyboval žiadny iný objekt cez merací lúč.

UPOZORNENIE
V opačnom prípade existuje možnosť, že vzdialenosť sa nebude vzťahovať na želaný cieľ, ale na iný objekt.

6.3.3 Reflektorová výtyčka

Reflektorová výtyčka POA 50 (s metrickými jednotkami), pozostávajúca zo 4 tyčových prvkov (s dĺžkou po 300 mm), hrotu výtyčky (s dĺžkou 50 mm) a platničky s reflektorom (s výškou 100 mm, prípadne vzdialenosťou 50 mm od stredu), slúži na meranie bodov na zemi.

Reflektorová výtyčka POA 51 (s imperiálnymi jednotkami), pozostávajúca zo štyroch tyčových prvkov (s dĺžkou po 12 palcov), hrotu výtyčky (s dĺžkou 2,03 palca) a platničky s reflektorom (s výškou 3,93 palca, prípadne vzdialenosťou 1,97 palca od stredu), slúži na meranie bodov na podlahi. Pomocou integrovaného stĺpca sa dá reflektorová výtyčka postaviť kolmo nad bodom na zemi. Vzdialenosť od hrotu byť až po stred reflektora je variabilná, aby bol zaručený voľný výhľad pre laserový merací lúč, aj ponad rôzne prekážky.

310
Potlačou na reflexnej fólii je zaručené bezpečné meranie smeru a vzdialenosti, okrem toho poskytuje reflexná fólia väčší dosah, oproti iným cieľovým povrchom.

<table>
<thead>
<tr>
<th>Dĺžky reflektorových výtyčiek</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
</tr>
</thead>
<tbody>
<tr>
<td>POA 50 (s metrickými jednotkami)</td>
<td>100 mm</td>
<td>400 mm</td>
<td>700 mm</td>
<td>1 000 mm</td>
<td>1 300 mm</td>
</tr>
<tr>
<td>POA 51 (s impériálnymi jednotkami)</td>
<td>4"</td>
<td>16"</td>
<td>28"</td>
<td>40"</td>
<td>52"</td>
</tr>
</tbody>
</table>

6.4 Meranie výšok

6.4.1 Meranie výšok

S prístrojom je možné merať výšky, či prípadne výškové rozdiely. Merania výšok sú založené na metóde "trigonometrických určovaní výšok" a vypočítavajú sa zodpovedajúcim spôsobom.
Merania výšok sa vypočítavajú pomocou vertikálneho uhla a šikmej vzdialenosti v spojení s výškou prístroja a výškou reflektora.

\[dvýš = \cos(Vu) \cdot Sv + Vi - Vr + (kor.) \]

Na výpočet absolútnej výšky cieľového bodu (bodu na zemi) sa pripočítava výška stanice \(Stan \ Výš \) k hodnote delta výšky.

\[Výš = Stan \ Výš + dvýš \]

6.5 Pomoc pri navádzaní

6.5.1 Pomoc pri navádzaní

Pomoc pri navádzaní možno manuálne zapnúť alebo vypnúť a frekvenciu blikania možno meniť v 4 stupňoch.

Pomoc pri navádzaní pozostáva z dvoch červených LED-diód v tele dalekohľadu. V zapnutom stave bliká jedna z dvoch LED-diód, aby bolo možné jednoznačné vidieť, či sa osoba nachádza naľavo alebo napravo od cieľovej linie. Osoba, ktorá stojí vo vzdialenosti aspoň 10 m od prístroja a v blízkosti cieľovej linie, vidí blikajúce alebo trvalé svetlo silnejšie, v závislosti od toho, či sa nachádza naľavo alebo napravo od cieľovej linie. Osoba sa nachádza v cieľovej linii vtedy, keď vidí obidve LED-diódy srovňať s rovnakou intenzitou.

6.6 Laserpointer

Prístroj má aj možnosť trvalého zapnutia laserového meracieho lúča. Trvalo zapnutý laserový merací lúč sa ďalej označuje ako “Laserpointer”. Ak sa práce vykonávajú v interiéri, je možné Laserpointer použiť na cieľovanie, prípadne na ukazanie smeru merania. V exteriéri je však meraci lúč viditeľnejší iba za určitých podmienok a táto funkcia sa v praxi príliš neuplatní.

6.7 Dátové body

Tachymetre Hilti merajú dátum, ktorý výsledky vytvárajú meracie bod. Rovnakým spôsobom sa dátové body so svojím opisom pozície používajú v aplikáciách, ako je napríklad vytváranie alebo aj na určenie a určenie či stabilizáciu stanice. Na určenie či urýchlenie výberu bodov sú v tachymetri Hilti dostupné rôzne možnosti.

6.7.1 Výber bodov

Výber bodov je dôležitou súčasťou systému tachymetra, pretože body sú merané vo všetkých oblastiach a body sa aj opätovne využívajú na vytyčovanie, pre stanice, na orientácie a súvisejúci činnosť.

Body je možné vyberať rôznym spôsobom:

1. Z plánu
2. Zo zoznamu
3. Manuálnym zadáním

Body z plánu

Kontrolované body (fílmové body) sú pre výber bodov dané k dispozícii graficky. Body sa v grafike vyberajú ťuknutím prstom, prípadne ťuknutím perom.

Zvolte z plánu

![Zobrazenie zvoleného bodu z grafiky.](image)

Zruš

Pruženie a návrat na predchádzajúce zobrazenie.

Man

Výber bodu manuálnym zadaním.

OK

Potvrdenie a prevzetie zadania.

Znázornenie všetkých bodov v zobrazovacom poli.

Zdroj: 20.04.2017 | Doc-Nr: PUB / 5135728 / 000 / 01
UPOZORNENIE
Dáta bodov, ku ktorým je priradený nejaký grafický prvok, sa na tachymetrinedajú upravovať a ani vymazať. Túto činnosť možno vykonávať len v programe Hilti PROFIS Layout.

Body zo zoznamu

Body s manuálnym zadaním

Výber bodu zo zoznamu.
Zváčšenie náhľadu.
Zmenšenie náhľadu.
Zváčšenie vybranej oblasti.

Prerušenie a návrat na predchádzajúce zobrazenie.
Výber bodu z plánu.
Výber bodu manuálnym zadaním.
Potvrdenie a prevzatie zadania.

Prerušenie a návrat na predchádzajúce zobrazenie.
Výber bodu z plánu.
Výber bodu zo zoznamu.
Potvrdenie a prevzatie zadania.
7 Prvých krokov

7.1 Akumulátory
Prístroj obsahuje dva akumulátory, ktoré sa vybijajú postupne po sebe.
Vždy je indikované aktuálne nabité obidvoch akumulátorov.
Při výmene je možné používať jeden akumulátor na prevádzku, zatiaľ čo sa druhý akumulátor nabijá.
Kvôli výmene akumulátorov počas prevádzky a preto, aby sa zabránilo vypnutiu prístroja, má zmysel meniť akumulátor postupne po sebe.

7.2 Nabíjanie akumulátorov
Po vybálení prístroja najprv vypnite z puzdra sieťový adaptér, nabíjačku a akumulátor.
Akumulátoch nechajte nabíjať cca 4 hodiny.

7.3 Vloženie a výmena akumulátorov
Nabité akumulátory vložte do prístroja konektorm smerom k prístroju a nadol.
Starostlivo zaistite kryt prístroja na akumulátor.

7.4 Kontrola funkcie

UPOZORNENIE
Pamätajte prosím na to, že tento prístroj je kvôli otáčaniu okolo axí dy vybavený klznými spojkami a nemusí sa zaistovať na bočných pohonoch.
Bočné pohony pre horizontálny a vertikálny smer sú nekonečnými pohonmi, porovnateľnými s optic kým níleverom.
Najprv na začiatku a potom v pravidelných intervaloch skontrolujte funkciu prístroja podľa nasledujúcich kritérií:
1. Na kontrolu klzných spojok otáčajte prístroj rukou opatrne doľava a doprava a dalekohľad smerom nahor a nadol.
2. Otáčajte bočné pohony pre horizontálny a vertikálny smer opatrne do obidvoch smerov.
3. Otočte zaostrovanie koliesko úplne doľava. Pozrite sa do dalekohľadu a pomocou prstenca okulára zaostrite nitkový kríž.
4. Skontrolujte smer oboch priezorov na dalekohľade, či sa zhoduje smerom nitkového kríža.
5. Ešte skôr než budete prístroj ďalej používať, uistite sa, že kryt pre obidve rozhrania USB je dobre uzatvorený.

7.5 Ovládacie panel
Ovládacie panel obsahuje spolu 5 tlačidiel s vytlačenými symbolmi a obrazovku citlivú na dotyk (Touchscreen), ktorú slúži na interaktívnu obsluhu.

7.5.1 Funkčné tlačidlá
Funkčné tlačidlá slúžia na všeobecnú obsluhu.

<table>
<thead>
<tr>
<th>Tlačidlo</th>
<th>Funkcia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Zapnutie alebo vypnutie prístroja.</td>
</tr>
<tr>
<td>1</td>
<td>Zapnutie, prípadne vypnutie podsvietenia.</td>
</tr>
<tr>
<td>FNC</td>
<td>Vyvolanie ponúky FNC pre podporované nastavenia.</td>
</tr>
<tr>
<td>home</td>
<td>Prerušenie alebo ukončenie všetkých aktivných funkcii a návrat na úvodné menu.</td>
</tr>
<tr>
<td>?</td>
<td>Vyvolanie pomocníka k aktuálnemu zobrazeniu.</td>
</tr>
</tbody>
</table>
7.5.2 Veľkosť dotykové obrazovky
Veľkosť farebného displeja citlívého na dotyk (Touchscreen) je cca 74 x 56 mm (2,9 x 2,2 in), s rozlišením spolu 320 x 240 pix.

7.5.3 Rozdelenie dotykové obrazovky
Dotyková obrazovka je na účely obsluhy rozdelená príp. informáciou pre používateľa na viaceré oblasti.

7.5.4 Dotyková obrazovka - numerická klávesnica
Ak je potrebné zadávať číselné údaje, je automaticky daná k dispozícii príslušná klávesnica na displeji. Klávesnica je rozdelená podľa nasledujúceho znázornenia.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1234567890...</td>
<td>OK</td>
<td>Back</td>
<td>Forward</td>
<td>Cancel</td>
</tr>
</tbody>
</table>
7.5.5 Dotyková obrazovka - alfanumerická klávesnica

Ak je potrebné zadávať alfanumerické údaje, je automaticky darček k dispozícii príslušná klávesnica na displeji. Klávesnica je rozdelená podľa nasledujúceho znázornenia.

<table>
<thead>
<tr>
<th>Zadávanie Projekt</th>
<th>14h01</th>
<th>14:27</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zruš	Prerušenie a návrat na predchádzajúce zobrazenie.
abc	Prepnutie na malé písmeňa.
123	Prepnutie na numerickú klávesnicu.
OK	Potvrdenie a prevzatie zadania.
Vysun	Posunutie miesta zadávania vstupu doľava.
Posun	Posunutie miesta zadávania vstupu doprava.

<table>
<thead>
<tr>
<th>7.5.6 Dotyková obrazovka - všeobecné ovládacie prvky</th>
</tr>
</thead>
</table>

Tlačidlo aplikácie / programu - naspustenie programu alebo funkcie.

Správa dát

<table>
<thead>
<tr>
<th>19:08:50</th>
<th>Tlačidlo na priame zadávanie číselných údajov, vrátane znamienka a desatinných miest.</th>
</tr>
</thead>
</table>

RAF, T0 | Tlačidlo na priame zadanie alfanumerických znakov, vrátane písania veľkých a malých písmeň. |

MOG 143 | Výber zo zoznamu. Tieto zoznamy môžu obsahovať číselné a/alebo alfanumerické hodnoty, ako aj nastavenia. |

Tlačidlo na výber z “Ponuka Drop Down”. Vo všeobecnom prípade sa tlačidlo maximálne tri volby na výber nástavie. |

VÝBER |

| Späť |

Príklad tlačidla pre operáciu v najspodnejšom riadku zobrazenia.

7.5.7 Indikácia stavu Laserpointer

Prístroj je vybavený funkciou Laserpointer.

Laserpointer ZAP.

Laserpointer VYP.

7.5.8 Indikátory stavu akumulátora

Prístroj používa 2 lítium-iónové akumulátory, ktoré sa podľa potreby vybíjajú súčasne alebo rozdielným spôsobom. Prepnutie z jedného akumulátora na druhý sa vykonyva automaticky. Preto je kedykoľvek možné jeden akumulátor vybrať, napríklad kvôli jeho nabitiu a súčasne s druhým akumulátorm ďalej pracovať, pokiaľ je jeho kapacita dostatočná.

UPOZORNENIE

Čím čiernejší je symbol akumulátora, tým vyšší je stav jeho nabítenia.
7.6 Zapínanie/vypínanie

7.6.1 Zapnutie
Podržte stlačené tlačidlo vypínača na cca 2 sekundy.

UPOZORNENIE
Ak bol prístroj predtým úplne vypnutý, trvá kompletý proces zapnutia cca 20 – 30 sekúnd, s dvomi rôznymi po sebe nasledujúcimi zobrazeniami.

Koniec procesu zapínania bol dosiahnutý vtedy, keď je prístroj nutné uviesť do horizontálnej polohy (pozrite si kapitolu 7.7.2).

7.6.2 Vypínanie

Vypínanie je možné len po dovolenom čase. Tachymeter sa dostane do pokojového stavu. Po opätovnom stlačení tlačidla vypínača sa systém opäť spustí a vychádza z toho istého miesta, na ktorom bol prístroj uvedený do pokojového stavu.

UPOZORNENIE
Pamätajte prosím, že vypnutie v prípade opätovných zapnutí je z bezpečnostných dôvodov ešte raz položená príslušná otázka aprístroj vyžaduje dodatočné potvrdenie zo strany používateľa.

7.7 Postavenie prístroja

7.7.1 Postavenie s bodom na zemi a laserovou olovnicou

Prístroj by vždy mal stáť nad bodom označeným na zemi, aby v prípade odchýlok merania bolo možné opäť využiť dáta stanice alebo body stanice prípadne orientačné body. Prístroj má laserovú olovnicu, ktorá sa po zapnutí prístroja taktiež zapne.

7.7.2 Postavenie prístroja

1. Statív postavte stretom hlavy statívu približne nad príslušný bod na zemi.
2. Prístroj naskrutkujte na statív a zapnite ho.
3. Ručne pohybujte dvomi nohami statívu tak, aby sa laserový túč nachádzal na značke na zemi.
5. Zvýšené odchytky laserového bodu od značky na zemi vyrovnané pomocou nastavovacích skrutiek – laserový bod sa teraz musí nachádzať na značke na zemi.
6. Predĺžením nôh statívu vyrovnané krabicovú libelou na trojnožku doprosť.

UPOZORNENIE

Docittle to predĺžením alebo skrátením tejto nohy statívu, ktorá leží oproti bublinke, v zavislosti od toho, ktorým smerom sa má bublinka pohybuť. Je to iteratívny proces a musí sa prípadne niekoľkokrát opakovať.

8. Aby ste prístroj mohli spustiť, musí sa elektronická “krabicová libela” dať pomocou nastavovacích skrutiek do stredu a musí sa nachádzať do stredu. Ak nastane tento prípad, je možné prístroj zapnúť.
9. Po tom, čo bola nastavená elektronická libela, skontrolujte laserovú olovnicu nad bodom na zemi a prípadne prístroj ešte raz posuňte na tanieri statív.
10. Zapnite prístroj.

UPOZORNENIE: Tlačidlo OK je aktívne vtedy, keď sa bublinky libiel pre dĺžku (Ln) a priečku (Offs) nachádzajú v rámci celkového sklonu 45°.

7.7.3 Postavenie nad rúrky a pomocou laserovej olovnice

Body na zemi sú často vyznačené rúrkami. V tom prípade mierí laserová olovnica do rúrky, bez vizuálneho kontaktu.

Aby bol laserový bod viditeľný, položte na rúrku papier, fóliu alebo iný slabo prieľahlý materiál.

7.8 Aplikácia Teodolit

V aplikácii s názvom Teodolit sú k dispozícii základné funkcie teodolitu, na nastavenie odčítavania Hu na krhu.
Vyvolanie aplikácie Teodolit na nastavenie hodnôt na vodorovnom kruhu.

7.8.1 Nastavenie zobrazenia vodorovného kruhu
Odčítavanie z vodorovného kruhu sa zastavi, zaciel sa na nový cieň a odčítavanie z kruhu sa potom opäť spustí.

Nastavte Hu

<table>
<thead>
<tr>
<th>Hu</th>
<th>355° 42' 00"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vu</td>
<td>88° 43' 24"</td>
</tr>
</tbody>
</table>

Pozastavenie aktuálneho Hu-
odstíavaná z kruhu.

Fixujte a nastavte Hu

<table>
<thead>
<tr>
<th>Hu</th>
<th>355° 39' 05"</th>
</tr>
</thead>
</table>

Hu fixovaný.
Zamerajte cieň, potom stlačte [OK] a potvrďte Hu.

Prušenie a návrat na predchádzajúce zobrazenie bez zmény hodnot Hu.

Nastavenie hodnoty Hu v zobrazení.

<table>
<thead>
<tr>
<th>Hu</th>
<th>355° 38' 55"</th>
</tr>
</thead>
</table>

7.8.2 Manuálne zadanie odčítavania z kruhu
Akékoľvek fúbovoľné odčítavanie z kruhu sa dá v každej pozícii zadať aj manuálne.
7.8.3 Nastavenie odčítavania z kruhu na nulu
Voľbou Hu "nula" sa dá odčítanie z vodorovného kruhu jednoduchým a rýchlym spôsobom nastaviť na "nulu".

Nastavte Hu

<table>
<thead>
<tr>
<th>Hu</th>
<th>328° 56' 36"</th>
<th>13/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vu</td>
<td>64° 35' 16"</td>
<td></td>
</tr>
</tbody>
</table>

Fix Hu Hu = 0 OK

Potvrdenie zobrazenia.

7.8.4 Indikácia zvislého sklonu

Nastavte Hu nula

<table>
<thead>
<tr>
<th>Hu (stáry)</th>
<th>328° 55' 06"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu (nový)</td>
<td>0° 00' 00"</td>
</tr>
</tbody>
</table>

U [OK] nastavte Hu = 0.

Zruš OK

Manuálne zadanie hodnoty pre horizontálny uhel.

Potvrdenie zobrazenia.

Opustenie funkcie.

Zruš

Nastavenie aktuálneho uhla Hu na 0.

Prerušenie a návrat na predchádzajúce zobrazenie bez zmeny hodnoty Hu.

Nastavenie hodnoty Hu na "nulu".

UPOZORNENIE

Zobrazenie v percentách je aktivné len pre toto zobrazenie.

Sklony tak možno merať, resp. vyrábať v %.

Printed: 20.04.2017 | Doc-Nr: PUB / 5135728 / 000 / 01
8 Nastavenia systému

8.1 Konfigurácia

V ponuke pre programy sa pomocou tlačidla Konfigurácia dá preskočiť na konfiguračnú ponuku.

8.1.1 Nastavenia

Nastavenia pre uhlovú zvislú rovinku, uhlové rozlišenie a nastavenie zvislého kruhu na nulu.
Nastavenia kritérií automatického vypnutia a tónu pipnutia, ako aj voľba jazyka.

Možné nastavenia

Jednotky uhlov SMS (° ′ ″)
Gon

Uhlové rozlíšenie
1°, 5′, 10′
5cc, 10cc, 20cc

Vu nula Zenit
Horizont

Vzdialenosť Meter
US Feet (americká stopa), Int Feet (medzinárodná stopa), Ft/in-1/8, Ft/in-1/16

Decimálny formát 1000.0
1000,0

Auto zap./vyp.

Vyp. Vypne režim vypínania po určitom čase.

Pipnutie (beep) Zap./vyp.
Zap. Zapne akustický signál v prípade, že nastane nejaká chyba.

Vyp.

Jazyk Tu sa dá zvoliť jazyk pre dotykovú obrazovku.
8.2 Čas a dátum
Prístroj má elektronické systémové hodiny, ktoré dokážu zobrazovať čas a dátum v rôznych formátoch, ako aj príslušných časových zónach a takže dokážu zohľadniť posun pri prechode na letný čas.

<table>
<thead>
<tr>
<th>Zvolte úlohu</th>
<th>14:06/11 11:33</th>
<th>Vyvolanie ponuky na zadávanie dátumu a času.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu</td>
<td>355° 42' 00"</td>
<td></td>
</tr>
<tr>
<td>Vu</td>
<td>88° 43' 24"</td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>4.473 m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teod</th>
<th>V%</th>
<th>Mer</th>
<th>Aplik</th>
</tr>
</thead>
</table>

Zadávanie času a dátumu v nasledujúcom zobrazení

<table>
<thead>
<tr>
<th>Zmeňte dátum/čas</th>
<th>14:06/11 11:33</th>
<th>Zmeňte časovú zónu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čas</td>
<td>13:30</td>
<td></td>
</tr>
<tr>
<td>Dátum</td>
<td>14/06/11</td>
<td></td>
</tr>
<tr>
<td>Formát času</td>
<td>24 hodín</td>
<td></td>
</tr>
<tr>
<td>Formát dátumu</td>
<td>DD/MM/RR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Čas. zóna</th>
<th>OK</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zmeňte časovú zónu</th>
<th>14:06/11 11:33</th>
<th>Zruš</th>
</tr>
</thead>
<tbody>
<tr>
<td>Časová zóna</td>
<td>(GMT-08:00)</td>
<td></td>
</tr>
<tr>
<td>Auto letný čas</td>
<td>Zap</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zruš</th>
<th>OK</th>
</tr>
</thead>
</table>

Prerušenie a návrat na predchádzajúce zobrazenie.
Časové zóny GMT -12 hod. až GMT +13 hod. Časové zóny je možné rozpoznať podľa hlavných miest.

Automatický letný čas Záp.
Vyp.

9 Ponuka funkcií (FNC)
Funkčným tlačidlom FNC sa vyvoláva ponuka funkcií. Toto vyvolanie ponuky je v systéme k dispozícii kedykoľvek.

9.1 Navádzacie svetlo
Zapnutie alebo vypnutie navádzacieho svetla, ako aj zmena frekvencie blikania (sequencia vypnutá, 1 pomaly) až 4 (rýchlo).
9.2 Laserpointer

Zvolte funkciu Laser: Zap

9.3 Osvetlenie displeja

Zapnutie alebo vypnutie osvetlenia displeja, ako aj zmena intenzity. Čím bude jas vyšší, tým viac energie sa spotrebuje.

9.4 Elektronická libela

Pozrite si kapitolu 7.7.1 Postavenie s bodom na zemi a laserovou olovnicou.

9.5 Atmosférické korekcie

Ak majú byť vzdialenosti zmerané presne, je bezpodmienené potrebné zohľadniť atmosférické vplyvy. Prístroj vypočíta a koriguje zodpovedajúce vzdialenosť automaticky, na vykonanie tohto úkonor je však potrebné zadať teplotu a tlak okolitého vzduchu. Tieto parametre sa môžu zadávať v rôznych jednotkách.
9.5.1 Korekcia atmosférických vplyvov

Zvolte funkciu

Apliká=KonfiguráciaFunkcie

Nav svetlo: Vyp
Laser: Zap
Jas: 5/5
Libela

ppm OK

1. Vyberte si voľbu ppm.

Znenie ppm

Jednotka tlaku mbar
Jednotka tepl. °C
Tlak 1013 mbar
Teplota 20.0 °C
ppm -1

Zruš OK

2. Zvolte zodpovedajúce jednotky a zadajte tlak a teplotu.

Nastavené atmosférické hodnoty a ich jednotky

<table>
<thead>
<tr>
<th>Jednotka tlaku</th>
<th>hPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmHg</td>
<td></td>
</tr>
<tr>
<td>mbar</td>
<td></td>
</tr>
<tr>
<td>inHg</td>
<td></td>
</tr>
<tr>
<td>psi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jednotka teploty</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td></td>
</tr>
</tbody>
</table>

10 Funkcie k aplikáciám

10.1 Projekty

Predtým než sa má vyvoláť prostredníctvom tachometra nejaká aplikácia, musí byť otvorený alebo vybraný nejaký projekt.

Ak je dostupný aspoň jeden projekt, zobrazí sa výber spomedzi projektov, ak nie je dostupný žiadny projekt, pokračuje sa hned ďalej k vytvorení nového projektu.

Všetky dátu budú priradené k aktívnemu projektu a zodpovedajúco uložené.

10.1.1 Zobrazenie aktívneho projektu

Ak je v pamäti dostupný už jeden alebo viaceré projekty a jeden z nich sa používa ako aktívny projekt, musí sa projekt pri každom novom spustení aplikácie potvrdiť, vybrať iný projekt alebo je potrebné vytvoriť nový projekt.
10.1.2 Výber projektu

Vyberte si jeden zo zobrazených projektov, ktorý sa má nastaviť ako aktuálny projekt.

10.1.3 Vytvorenie nového projektu

Všetky dátá sa vždy priradzujú k nejakému projektu. Nový projekt by sa teda mal vytvárať vtedy, keď sa majú dátá nanovo priradiť a tieto dátá majú byť priradené iba tu. Pri vytváraní projektu sa súčasne ukladá dátum a čas vytvorenia a počet v ňom obsiahnutých staníc, ako aj počet bodov, nastavený na nulu.
10.1.4 Informácia o projekte
Informáciou o projekte sa zobrazuje aktuálny stav projektu, napríklad dátum vytvorenia a čas, počet stanic a celkový počet uložených bodov.

Podr. projektu
Aktor/voľba: strava

<table>
<thead>
<tr>
<th>Projekt</th>
<th>Layout_New_Bldg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dátum</td>
<td>18/02/11</td>
</tr>
<tr>
<td>Čas</td>
<td>13:29</td>
</tr>
<tr>
<td>Počet bodov</td>
<td>362</td>
</tr>
<tr>
<td>Počet Stan</td>
<td>97</td>
</tr>
</tbody>
</table>

Potvrdenie zobrazenia a návrh na výber projektu.

10.2 Umiestnenie stanice a orientácia

UPOZORNENIE
Uvedomte si prosím, že: Ak je stanica nesprávna alebo zlá, bude všetko, čo je následne merané od tejto stanice, nesprávne – a to sú také práce ako merania, vytvárania, usporiadanie a podobne.

10.2.1 Prehľad

V určitých aplikáciách, kde sa používajú absolútné pozície, je po fyzickom postavení prístroja, prípadne postavení stanice, nutné aj určiť pozíciu stanice prostredníctvom dát, pretože v aplikácii je potrebné vedieť, na ktoré pozicije stojí prístroj. Túto poziciu možno definovať bud prostredníctvom súradnic, alebo prostredníctvom postavenia stavebnej osi. Tento proces sa nazýva Nastavenie stanice. Ďalej je potrebné, okrem pozície prístroja, vedieť aj to, v akom smere ležia referenčné osi, prípadne poznáť smer hlavnej osi.

Hlavná osa leží príp. súradnicách veľa častejších prípadov smerom na sever alebo prípadne smerom na jih. Je dôležité poznáť smer referenčných osí, pretože vodovorný kruh so stupnicou sa svojou "nullovou značkou" otáča akoby paralelné v smere k hlavnej osi.

UPOZORNENIE

Proces nastavenia stanice zahŕňa vždy stanovenie pozície a orientácie.

Kde sa spúšťa niektorá zo štyroch aplikácií, ako napríklad Horizontálne vytýčenie, Vertikálne vytýčenie, Premeranie, Meranie a zaznamenanie, musí sa určiť stanica a orientácia. Ak sa má dodatočne pracovať ešte aj s výškami, to znamená, že sa majú určiť alebo vytýčiť cieľové výšky, je ešte nutné určiť výšku stredu dálkohľadu na prístroji.

Zhrnutie možností postavenia stanice (6 volieb)

<table>
<thead>
<tr>
<th>Možnosť</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výšky</td>
<td>Zap, Vyp</td>
</tr>
<tr>
<td>Syst. bod.</td>
<td>Stavebná os, Surad / Plán</td>
</tr>
<tr>
<td>Postavenie stanice</td>
<td>Nad bod, Voľná stan.</td>
</tr>
</tbody>
</table>

10.2.2 Nastavenie stanice nad bodom, s použitím stavebných osí

Mnoho stavebných prvkov sa svojim vymeraním alebo opisom pozície vzťahuje na stavebné osi uvedené v pláne. Pomocou tachymetra môžete použiť osy a ich prislúchajúce vymerania.

Zvolte typ stanice

<table>
<thead>
<tr>
<th>Typ stanice</th>
<th>Opiť vybraného stavebného článku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vyšky</td>
<td>Zap, Vyp</td>
</tr>
<tr>
<td>Bod systém</td>
<td>Stavebná os</td>
</tr>
<tr>
<td>Stan nastav.</td>
<td>Nad bod</td>
</tr>
</tbody>
</table>

Zruš **OK**

Zruš **OK**

Prušenie a návrat na predchádzajúce zobrazenie.

Potvrdenie výberu a pokračovanie ďalej na určenie stanice.
Postavenie prístroja nad bodom na stavebnej osi
Prístroj sa postaví nad bod označený na stavebnej osi, od ktorého sú dobre viditeľné body alebo prvky, ktoré treba merat.
Obzvlášt je potrebné dbať na bezpečné a pevné postavenie pomocou statívu.

Pozícia prístroja \(P_0 \) a orientačný bod \(P_1 \) ležia na jednej spoločnej stavebnej osi.

10.2.2.1 Zadávanie bodu stanice
Pre bod stanice, prípadne stanovisko prístroja, je potrebné zadať označenie na jednoznačnú identifikáciu, pretože kvôli ukladaniu dát stanice je potrebné jednoznačné označenie.

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>R77</th>
</tr>
</thead>
</table>

10.2.2.2 Zadávanie cieľového bodu
Pre orientačný bod sa musí zadať označenie slúziace na jednoznačnú identifikáciu pri ukladani dát.
Zadané úkony musia nasledovať "meranie" k orientačnému bodu. Na vykonanie tohto úkonu je potrebné podľa možnosti čo najpresnejšie zacítiť na orientačný bod alebo cieľový bod.

10.2.2.3 Nastavenie stanice so stavebnou osou

Po vykonaní merania uhlov kvôli orientácii je stanica bezprostredne potom nastavená.

UPOZORNENIE

Stanica sa vždy uloží v internej pamäti. Ak sa v pamäti už názov stanice raz nachádza, je potrebné na tomto mieste stanicu premenovať, prípadne zadáť nový názov stanice.

Po nastavení stanice sa bude pokračovať s vlastnou zvolenou hlavovou aplikáciou.

10.2.2.4 Posunutie a rotácia osi

Počiatočný bod osi sa dá presunúť, ak chcete použiť inú referenciu ako počiatok systému súradníc. Ak je zadaná hodnota kladná, posunie sa os dopredu, ak je záporná, posunie sa smerom dozadu. Počiatočný bod bude pri kladnej hodnote posunutý doprava, pri zápornej hodnote smerom doľava.
Rotácia (otočenie) osi
Smerovanie osi sa dá otočiť okolo počiatočného bodu. Pri zadaní kladných hodnôt sa os otočí v smere hodinových ručičiek, pri zadani záporných hodnôt sa otočí proti smeru hodinových ručičiek.

Po nastavení stanice sa bude pokračovať s vlastnou zvolenou hlavnou aplikáciou.

10.2.3 Voľné umiestnenie so stavebnými osami
Voľné umiestnenie umožňuje určiť pozíciu stanice meraniami uhlov a vzdialeností k dvojmu referenčným bodom. Možnosť voľného postavenia sa používa vtedy, kedy nie je možné postavenie nad jedným bodom na stavebnej osi, alebo kedy je zemožněný výhľad na merané pozície.

Pri voľnom postavení, prípadne voľnom umiestnení, je potrebné pracovať mimoriadne starostlivo. Na určenie stanice sa vykonávajú dodatočné merania a dodatočné merania nesú vždy so sebou riziko chyby. Okrem toho je potrebné dávať pozor na to, aby geometrické pomery poskytli použiteľné pozície. Prístroj v zásade kontroluje geometrické pomery, aby vypočítať použiteľnú pozíciu a v kritických prípadoch vydá varovanie.

Je však povinnosťou používateľa pracovať s mimoriadne zvýšenou pozornosťou – pretože softvér nedokáže rozpoznať všetko.
Voľné postavenie prístroja so stavebnou osou

Na voľné postavenie by ste mali vyhľadať bod na prehľadnom mieste, tak, aby bol možný dobrý výhľad na dva referenčné body tej istej stavebnej osi a aby bol súčasne podľa možnosti zaručený aj dobrý výhľad smerom k meraným bodom.

V každom prípade je vhodné urobiť si najskôr značku na zemi a potom prístroj postaviť nad ňou. Tak vždy existuje možnosť dodatočnej kontroly pozície a šancu na odhalenie prípadných nepresností. Následne zmerané referenčné body musia ležať na stavebnej osi alebo v prípade, že nie je dostupná nijaká os, sa definuje stavebná či referenčná os.

Pozícia prístroja P₀ leží mimo stavebnej osi. Meranie k prvému referenčnému bodu P₁ určuje začiatok stavebnej osi, zatiaľči druhý referenčný bod P₂ zaznamenáva do systému prístroja smer stavebnej osi.

S nasledujúcimi aplikáciami sa počítanie dlžkových hodnôt vzťahuje na smer stavebnej osi s hodnotou 0,000 pri prvom referenčnom bodovi.

Priečne hodnoty sa chápajú ako vzdialenosť (v pravom uhle) k stavebnej osi.
10.2.3.1 Meranie k prvom referenčnému bodu na stavebnej osi

<table>
<thead>
<tr>
<th>Zmerajte Ref Bod 1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajh/AhVyčistenie/Načtič.</td>
<td>14/00/1</td>
<td>15/01</td>
<td>B 5</td>
</tr>
<tr>
<td>Ref Bod 1</td>
<td>R1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td>354° 25' 56"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vu</td>
<td>73° 45' 11"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Späť | Mer | Ďalšie

10.2.3.2 Meranie k druhému referenčnému bodu

<table>
<thead>
<tr>
<th>Zvolte ref.bod 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajh/AhVyčistenie/Načtič.</td>
<td>29/00/1</td>
<td>00/39</td>
<td></td>
</tr>
<tr>
<td>Ref bod 2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td>156° 35' 41"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vu</td>
<td>73° 05' 53"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>3.098 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Späť | Kon.vzd. | Mer | Ďalej

10.2.3.3 Nastavenie stanice

Po vykonaní merania uhlov kvôli orientácii je stanica bezprostredne potom nastavená.

Nastavanie stanice

<table>
<thead>
<tr>
<th>Nastavte stanicu</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajh/AhVyčistenie/Načtič.</td>
<td>14/00/1</td>
<td>15/01</td>
<td></td>
</tr>
<tr>
<td>Stan ID</td>
<td>Sta 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ori Bod</td>
<td>R1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Späť | Náhľad | Nastav

UPOZORNENIE
Stanica sa vždy uloží v internej pamäti. Ak sa v pamäti už názov stanice raz nachádza, je potrebné na tomto mieste stanicu premenovať, prípadne zadáť nový názov stanice.

Pokračujte ďalej s rotáciou a posunutím osi tak, ako je opísané v príslušných kapitolách.
10.2.4 Nastavenie stanice nad bodom, s použitím súradnic

Na mnohých stavbách sú dostupné body už z vymeriavaní, ktoré sú dostupné aj so súradnicami alebo sú dostupné stavebné prvky, stavebné osi, základy a podobne, ktoré sú opísané pomocou súradníctva. V takomto prípade môže byť v postavení stanice rozhodujúce to, či sa má pracovať v systéme súradníctva alebo stavebných osí.

Zvolte typ stanice

<table>
<thead>
<tr>
<th>Vyšky</th>
<th>Vyp</th>
<th>Zruš</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod systém</td>
<td>Súrad/plán</td>
<td>Prerušenie a návrat na predchádzajúce zobrazenie.</td>
<td></td>
</tr>
<tr>
<td>Stan nastav.</td>
<td>Nad bodom</td>
<td>Potvrdenie výberu a pokračovanie ďalej na určenie stanice.</td>
<td></td>
</tr>
</tbody>
</table>

Postavenie prístroja nad bodom so súradnicami

Pristroj sa postavi nad bod označený na zemi, ktorého pozícia je udaná súradnicami a merané body alebo prvky sú dobre viditeľné.

Obzvlášť je potrebné dbať na bezpečné a pevné postavenie pomocou statívu.

N(X)

Pozícia prístroja sa nachádza na súradnicovom bode \(P_0 \) a cieli sa (pre orientáciu) na druhý súradnicový bod \(P_1 \).

Pristroj vypočíta polohu v rámci systému súradníctva.

UPOZORNENIE

Tak je váčšia istota správneho identifikovania orientačného bodu. Ak má súradnicový bod \(P_0 \) aj svoju výšku, použije sa táto hodnota najskôr ako výška stanice. Predtým než stanicu definitívne nastavíte, je možné výšku stanice kedykoľvek nanovo určiť alebo zmeniť.

Orientačný bod je rozhodujúci pre správne vypočítanie smieru a mal by sa preto vybrať a merat mimoriadne starostlivo.

10.2.4.1 Zadanie pozície stanice

Pre bod stanice, prípadne stanovisko prístroja je potrebné zadať označenie s jednoznačnou identifikáciou a k tomuto označeniu musí prislúchať súradnicová pozícia.

To znamená, že bod stanice môže byť v projekte dostupný ako uložený bod, alebo sa súradnice musia zadať manuálne.
10.2.4.2 Zadávanie cieľového bodu

Pre cieľový bod je potrebné zadať označenie s jednoznačným identifikátorom a k tomuto označení musí prislúchať pozícia súradnice.
Cieľový bod musí byť v projekte dostupný ako uložený bod alebo je potrebné zadať súradnice manuálne.

UPOZORNENIE
Pri zadani názvu pre orientačný bod sú príslušné súradnice alebo pozícia vyhľadané z uložených grafických dát. V prípade, že pod týmto názvom nie sú dostupné žiadne data bodov, je potrebné zadáť súradnice manuálne.

Doplnková (voliteľná) kontrola vzdialenosti medzi stanicou a orientačným bodom

Po zadani cieľového bodu sa musi na tento bod presne zacelit kvôli meraniu orientácie.
Je to pomôcka na kontrolu správneho vyberu bodu a správneho zacielenia na tento bod a údava, ako sa nameraná vzdialenosť zhoduje so vzdialenosťou vypočítanou zo súradnic.
10.2.4.3 Nastavenie stanice

Stanica sa vždy uloží do internej pamäti. Ak sa v pamäti už názov stanice raz nachádza, je potrebné na tomto mieste stanicu premenovať, prípadne zadať nový názov stanice.

<table>
<thead>
<tr>
<th>Nastáva stanica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajb/hn/s:Znástanici</td>
</tr>
<tr>
<td>Stan ID</td>
</tr>
<tr>
<td>Ori Bod</td>
</tr>
</tbody>
</table>

10.2.5 Voľné umiestnenie so súradnicami

Voľné umiestnenie umožňuje určiť pozíciu stanice meraniami uhlov a vzdialeností k dvom referenčným bodom. Možnosť voľného postavenia sa používa vtedy, keď nie je možné postavenie nad jedným bodom na stavebnej osi, alebo keď je zrejmý výhľad na merané body.

Príslušná funkcia ďalej umožňuje spájať dva merané body. Priečvoré pomery, ako napríklad v kritických prípadoch, vyžadujú starostlivosť.

Prístroj v zásade kontroluje geometrické pomery, aby vypočítal použiteľnú pozíciu a v kritických prípadoch vydá varovanie.

Je však vždy potrebné používať softvér nejakého zvýšenou pozornosťou – pretože softvér nedokáže rozpoznať všetko.
Volné postavenie prístroja so súradnicami

Na volné postavenie by ste mali vyhľadať bod na prehľadnom mieste, tak, aby bol možný dobrý výhľad na dva súradnicové body a aby bol možný dobrý výhľad k meraným bodom.

V každom prípade je vhodné urbiť si najskôr značku na zemi a potom prístroj postaviť nad touto značkou.

Tak vždy existuje možnosť dodatočnej kontroly pozície a šancia na odhalenie prípadných nepresností.

N(X)

Pozícia prístroja sa nachádza na volnom bode P₀ a následne sa meria uhol a vzdialenosť k dvom referenčným bodom P₁ a P₂, ktoré majú súradnice.

Následne sa pozícia prístroja P₀ určí z meraní k dvom referenčným bodom.

UPOZORNENIE

Ak sú obidva body, alebo iba jeden referenčný bod, dostupné aj s výškou, automaticky sa vypočíta aj výška stanice.

Predtým neriešiť stanicu definitívne nastavite, je možné výšku stanice kedykoľvek nanovo určiť alebo zmeniť.
10.2.5.1 Meranie k prvému referenčnému bodu

<table>
<thead>
<tr>
<th>Zmerajte Ref Bod 1</th>
<th>B 5</th>
<th>Zadanie názvu orientačného bodu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref Bod 1</td>
<td></td>
<td>Spät</td>
</tr>
<tr>
<td>Hu</td>
<td></td>
<td>Návрат na predchádzajúce zobrazenie.</td>
</tr>
<tr>
<td>Vu</td>
<td></td>
<td>Mer</td>
</tr>
<tr>
<td>Hv</td>
<td></td>
<td>Zmerať úhel a vzdialenosť.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dalšie</td>
</tr>
</tbody>
</table>

Pokračovanie dalej na meranie k druhému referenčnému bodu.

Príslušné súradnice alebo pozícia sa vyhľadá z uložených grafických dát. V prípade, že pod týmto názvom nie sú dostupné žiadne dátové bodov je potrebné zadať súradnice manuálne.

10.2.5.2 Meranie k druhému referenčnému bodu

<table>
<thead>
<tr>
<th>Zovolte ref bod 2</th>
<th></th>
<th>Návrat na meranie k prvému referenčnému bodu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref bod 2</td>
<td></td>
<td>Spät</td>
</tr>
<tr>
<td>Hu</td>
<td></td>
<td>Mer</td>
</tr>
<tr>
<td>Vu</td>
<td></td>
<td>Zmeranie úhla a vzdialenosť.</td>
</tr>
<tr>
<td>Hv</td>
<td></td>
<td>Dalšie</td>
</tr>
</tbody>
</table>

Pokračovanie dalej na nastavanie stanice. Kontrola vzdialenosť medzi referenčnými bodmi.

10.2.5.3 Nastavenie stanice

<table>
<thead>
<tr>
<th>Nastavte stanicu</th>
<th>A 1</th>
<th>Zadanie názvu stanice.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stan ID</td>
<td></td>
<td>Spät</td>
</tr>
<tr>
<td>Ori Bod</td>
<td></td>
<td>Náhľad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zobrazenie údajov o stanici.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nastav</td>
</tr>
</tbody>
</table>

Nastavenie stanice.
10.3 Nastavenie výšky

Ak sa má dodatočne (okrem nastavenia pozície a orientácie) pracovať ešte aj s výškami, to znamená, že sa majú určiť alebo vyťažiť cieľové výšky, je ešte nutné určiť výšku stredu dalekohľadu na prístroji.

Výšku možno nastaviť dvomi rôznymi spôsobmi:

1. Pri známej výške bodu na zemi sa zmeria výška prístroja – obidve hodnoty spolu udávajú výšku stredu dalekohľadu.
2. K bodu alebo značke so známanou výškou sa vykoná zmeranie uhla a vzdialenosť a tak sa „meraním“ urči alebo spätne prenesie výška stredu dalekohľadu.

10.3.1 Nastavenie stanice so stavebnou osou (volba: Výška "zapnutá")

Ak je zapnutá voľba s výškami, zobrazí sa vo vyobrazení nastavenia stanice aj výška stanice.

Túto môžete potvrdiť alebo určiť nanovo.

Určenie novej výšky stanice

Určenie výšky stanice sa dá vykonať dvomi rôznymi spôsobmi:

1. Priamym manuálnym zadaním výšky stanice.
2. Určením výšky stanice manuálnym zadaním výšky z výškovej značky a zmeraním V-uhla a vzdialenosť.

1. Priame manuálne zadanie výšky stanice

Po vybraní voľby na nové určenie výšky stanice v predchádzajúcom zobrazení je možné manuálne zadáť novú výšku stanice.

2. Určenie výšky stanice zadaním výšky a zmeraním V-uhla a vzdialenosť

Zadaním referenčnej výšky, výšky prístroja a výšky reflektora v spojení s V-uhlom a zmeraním vzdialenosť sa výška stanice akoby spätne prenásť od výškovej značky k stanici.

Na to je bezpodmienene potrebné zadáť správnu výšku prístroja a reflektora.
Prerušenie a návrat na predchádzajúce zobrazenie.

Zomeranie uhla avzdialenosti. Pokračovanie dálšom zobrazením nového vypočítaného výšky stanice.

Zobrazenie novej vypočítanej výšky stanice po zmeranií. Po zmeraní uhlov avzdialenosti sa zobrazí nová vypočítaná výška stanice a dá sa potvrdiť alebo zrušiť.

Pozmeraní uhlov avzdialenosti sáhajú vypočítanú výšku stanice a dá sa potvrdiť alebo zrušiť.

Prerušenie a návrat na predchádzajúce zobrazenie.

Potvrdenie výšky stanice. Pokračovanie dálším nastavením stanice.

Zobrazenie údajov o stanicí. Nastavenie stanice.
10.3.2 Nastavenie stanice so súradnicami (volba: výška "zapnutá")

Určenie novej výšky stanice

Určenie výšky stanice sa dá vykonať tromi rôznymi spôsobmi:

- Priame manuálne zadanie výšky stanice
- Určenie výšky stanice manuálnym zadanim výšky z výškovej značky a zmeraním V-uhla a vzdialenosti
- Určenie výšky stanice výberom bodu s výškou z pamäte fáz a zmeraním V-uhla a vzdialenosti k tomuto bodu

Stanoviteľné výšky stanice

<table>
<thead>
<tr>
<th>Služba výšky stanice</th>
<th>14:00:01</th>
<th>15:22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stan ID</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Stan Výška</td>
<td>0.800 m</td>
<td></td>
</tr>
<tr>
<td>v.pris</td>
<td>0.000 m</td>
<td></td>
</tr>
<tr>
<td>v.rfl</td>
<td>0.500 m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Späť</th>
<th>Bod Výška</th>
<th>Man V</th>
<th>OK</th>
</tr>
</thead>
</table>

1. **Priame manuálne zadanie výšky stanice**

Po vybraní voľby na nové určenie výšky stanice v predchádzajúcom zobrazení je možné manuálne zadať novú výšku stanice.

2. **Určenie výšky stanice zadanim výšky a zmeraním V-uhla a vzdialenosti**

Zadaním referenčnej výšky, výšky prístroja a výšky reflektora v spojení s V-uhlom a zmeraním vzdialenosti sa výška stanice akoby spätnie prenáša od výškovej značky k stanici.

Na to je bezpodmienené potrebné zadad správnu výšku prístroja a reflektora.
Zobrazenie novej vypočítanej výšky stanice po zmeraní
Po zmeraní uhlov a vzdialeností sa zobrazí nová vypočítaná výška stanice a dá sa potvrdiť alebo zrušiť.

Nastavenie stanice.

3. Určenie výšky stanice výberom bodu s výškou z pamäte dát a zmeraním V-uhla a vzdialenosti
Zadaním výškového bodu, výšky prístroja a reflektora v spojení s V-uhlom a zmeraním vzdialenosti sa výška stanice akoby spätné prenáša od výškového bodu, prípadne výškovej značky, k stanici.
Na to je bezpodmienene potrebné zadať správnu výšku prístroja a reflektora.

Príslušné súradnice alebo pozícia sa vyhľadá z uložených grafických dát.
V prípade, že pod týmto názvom nie sú dostupné žiadne dátové body, je potrebné zadať súradnice manuálne.
Zobrazenie novej vypočítanej výšky stanice po zmeraní
Po zmeraní úhlov a vzdialenosťí sa zobrazí nová vypočítaná výška stanice a dá sa potvrdiť alebo zrušiť.

Nastavenie stanice
Ak je zapnutá voľba "Výšky", je potrebné nastaviť výšku pre stanicu, prípadne musí byť hodnota pre výšku už dostupná. Ak sa nezobrazí žiadna výška stanice, nasleduje hlásenie o chybe s upozornením na určení výšky stanice.

11 Aplikácie
11.1 Horizontálne vytýčenie (H-vytýčenie)
11.1.1 Princíp H-vytýčenia
Vytýčením sa údaje z plánu prenesú do terénu. Tieto údaje z plánu sú buď rozmer, ktoré sa vzhľadom na stavebné osi, alebo pozície, ktoré sú opísané súradnicami. Údaje z plánu alebo pozície vytýčenia môžu zadať ako rozmery či vzdialenosť, možno ich zadať so súradnicami alebo používať ako dáta, ktoré boli predtým prenesené z počítača. Dodatočne je možné prenesť údaje z plánu z PC (vo forme nákresu CAD) na tachymeter a vybrať ich na vytýčenie príamo na tachymetre, vo forme grafického bodu, alebo grafického prvku.
Vďaka tomu nie je nutná manipulácia s veľkými číslami alebo s veľkým množstvom čísel.
Na spustenie aplikácie "Horizontálne vytýčenie" je potrebné vybrať v ponuke aplikácie príslušné tlačidlo.

Po vyvolaní aplikácie nasledujú zobrazenia projektov, prípadne výber projektu (pozrite si kapitolu 13.2) a voľba príslušnej stanice, prípadne postavenia stanice.

Po vykonaní postavenia stanice sa spustí aplikácia "Horizontálne vytýčenie". V závislosti od voľby stanice sú dve možnosti pri určení vytýčovaneho bodu:

1. Vytýčenie bodov so stavebnými osami.
2. Vytýčenie bodov so súradnicami a/alebo bodmi na základe CAD-nákresu.

11.1.2 Vytýčenie so stavebnými osami

Pri vytýčení so stavebnými osami sa hodnoty vytýčenia, ktoré je potrebné zadať, vždy vzťahujú na tú stavebnú os, ktorá bola zvolená ako referenčná os.

Zadanie bodu vytýčenia k stavebnej osi

Zadanie pozície vytýčenia ako rozmeru, vo vzťahu na stavebnú os definovanú v postavení stanice, prípadne stavebnú os, na ktorej je postavený prístroj.

Zadávanými hodnotami sú dĺžkové a priečne vzdialenosti vo vzťahu na definovanú stavebnú os.
Zadávanie hodnôt vytýčenia

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R85</th>
<th>v.rfl</th>
<th>0.400 m</th>
<th>Výč</th>
<th>7.000 m</th>
<th>Sív</th>
<th>6.800 m</th>
<th>Vyš</th>
<th>2.746 m</th>
</tr>
</thead>
</table>

UPOZORNENIE

Hodnoty vytýčenia na stavebnej osi v smere dopredu a dozadu od stanice s prístrojom sú hodnotami dĺžky a hodnoty vytýčenia ležiace napravo a naľavo od stavebnej osi sú priečnymi hodnotami. Hodnoty dopredu a napravo sú kladnými hodnotami, hodnoty dozadu a naľavo sú zápornými hodnotami.

Smer k bodu vytýčenia

Prístroj sa s týmto zobrazením zarovnáva k vytýčovanému bodu tak, že prístroj sa otáča dovtedy, kým červený ukazovateľ smeru nestojí na "nule" a pod ním ležiace zobrazenie rozdielového uhlia nestojí presne a v dostatočnej miere na "nule". V takomto prípade ukazuje níhový križ do smeru k vytýčovanému bodu, aby naviedol nosiča reflektora. Dodatočne je tu aj možnosť, že nosič reflektora sa prostredníctvom pomeri pri navážaní sám môže naviesť do cieľovej linie.

Vyrovnanie a meranie

<table>
<thead>
<tr>
<th>v.rfl</th>
<th>0.400 m</th>
<th>Bod ID</th>
<th>R85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu</td>
<td>47° 34' 46"</td>
<td>Hv</td>
<td>8.345 m</td>
</tr>
</tbody>
</table>

Späť | **OK**

Návrat na predchádzajúce zobrazenie.

Potvrdenie zadania a pokračovanie ďalej zobrazením na vyrovnanie prístroja k vytýčovanému bodu.

Návrat na zadávanie hodnôt vytýčenia.

Zmeranie vzdialenosti a pokračovanie ďalej zobrazením korekcií pre vytýčenie.

346
P0 je pozícia prístroja po postavení. P1 je bod vytýčenia a prístroj je už zarovnaný k bodu vytýčenia. Nosič reflektora stojí v blízkosti vypočítanej vzdialenosti.

Po každom meraní vzdialenosti sa zobrazí, o aký úsek smerom vpred alebo späť (dozadu) sa musí pohnúť nosič reflektora v smere vytýčovaneho bodu.

Korekcie vytýčenia po zmeraní vzdialenosti

Po úspešnom zmeraní vzdialenosti sa nosič reflektora navedie pomocou korekcí vpred, späť (dozadu), vľavo, vpravo, hore a dolu.

V prípade, že nosič reflektora bude "zameraný" presne v cieľovej linii, zobrazí sa korekcia smerom vpravo / vľavo s hodnotou 0,000 m (0,00 ft).

<table>
<thead>
<tr>
<th>Výtyčenie H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajk.</td>
</tr>
<tr>
<td>v.rf1</td>
</tr>
<tr>
<td>Bod ID</td>
</tr>
<tr>
<td>Vpr</td>
</tr>
<tr>
<td>Vpravo</td>
</tr>
<tr>
<td>Dolu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spät</th>
<th>Výsled</th>
<th>Mer</th>
<th>D. Bod</th>
</tr>
</thead>
</table>

Návrat na zadávanie hodnôt vytýčenia.

Zobrazenie výsledku a uloženie.

Zmeranie vzdialenosti a aktualizovanie korekcí pre vytýčenie.

Zadanie ďalšieho bodu.
P0 je pozícia prístroja po postavení. Keď prebieha meranie k pozícii reflektora, ktorá neleží presne v smere k novému bodu, zobrazia sa zodpovedajúce korekcie smerom vpred, späť (dozadu), vľavo, vpravo k novému bodu P1.

Prehľad smerových pokynov k bodu vytýčenia, vychádzajúc z posledného meraného cieľového bodu

<table>
<thead>
<tr>
<th>Smer</th>
<th>Pokyn k prístroju</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpred</td>
<td>Nosič reflektora sa musí o uvedený počet jednotiek posuňúť bližšie k prístroju.</td>
</tr>
<tr>
<td>späť</td>
<td>Nosič reflektora sa musí o uvedený počet jednotiek posuňúť ďalej od prístroja.</td>
</tr>
<tr>
<td>vľavo</td>
<td>Nosič reflektora sa musí (pri pohľade od prístroja) posuňúť doľava o uvedený počet jednotiek.</td>
</tr>
<tr>
<td>vpravo</td>
<td>Nosič reflektora sa musí (pri pohľade od prístroja) posuňúť doprava o uvedený počet jednotiek.</td>
</tr>
<tr>
<td>hore</td>
<td>Spička reflektora sa musí o uvedený počet jednotiek posuňúť nahor.</td>
</tr>
<tr>
<td>dolu</td>
<td>Spička reflektora sa musí o uvedený počet jednotiek posuňúť nadol.</td>
</tr>
</tbody>
</table>

Výsledky vytýčenia
Zobrazenie rozdielov vytýčenia v dĺžke, prieč. a výške je založené na poslednom meranom cieľovom bod.

<table>
<thead>
<tr>
<th>Výsledky vytýčenia</th>
<th>Bod ID</th>
<th>dVyc</th>
<th>dSey</th>
<th>dVýš</th>
</tr>
</thead>
<tbody>
<tr>
<td>R85</td>
<td>-3.637 m</td>
<td>-3.514 m</td>
<td>-0.657 m</td>
<td></td>
</tr>
</tbody>
</table>

UPOZORNENIE
Ak v postavení stanice (a v príslušných nastaveniach) nebola nastavená žiadna voľba pre výšky, bude zobrazenie dát o výške a všetky relevantné zobrazenia, vzťahujúce sa k nej, potlačené.
Uloženie dát vytýčenia so stavebnými osami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dĺžka (zadaná)</td>
<td>Zadaná dĺžková vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Prieč. (zadaná)</td>
<td>Zadaná priečná vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výška.</td>
</tr>
<tr>
<td>Dĺžka (nameraná)</td>
<td>Nameraná dĺžková vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Prieč. (nameraná)</td>
<td>Nameraná priečná vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
<tr>
<td>dPrieč</td>
<td>Rozdiel v priečnej hodnote, na základe stavebné osi. dPrieč = prieč. (nameraná) − prieč. (zadaná)</td>
</tr>
<tr>
<td>dLn</td>
<td>Rozdiel v hodnote dĺžky, na základe stavebné osi. dLn = dĺžka (nameraná) − dĺžka (zadaná)</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdiel vo výške. dVýš = výška (nameraná) − výška (zadaná)</td>
</tr>
</tbody>
</table>

11.1.3 Vytýčenie so súradnicami

Zadanie bodov vytýčenia

Zadanie hodnôt vytýčenia so súradnicami bodov sa dá vykonať trmom rôznymi spôsobmi:

1. Manuálnym zadanim súradnic bodov.
2. Výberom súradnic bodov zo zoznamu uložených bodov.
3. Výberom súradnic bodov z grafiky CAD s uloženými bodmi.

Zadávanie hodnôt vytýčenia (s nákresom CAD)

Bodov vytýčenia sa volá priamo z nákresu CAD.

Pritom je bod už uložený ako trojrozmerný až do dvojrozmerný a v závislosti od toho sa aj extrahuje.

Printed: 20.04.2017 | Doc-Nr: PUB / 5135728 / 000 / 00
UPOZORNENIE

Ak je v postavení stanice (a v príslušných nastaveniach) zvolená volba bez výšok, budú dáta o výške a všetky relevantné zobrazenia potlačené. Ďalšie zobrazenia sú totožné so zobrazeniami v predchádzajúcej kapitole.

Výsledky vytýčenia so súradnicami

Zobrazenie rozdielov vytýčenia v súradničiach je založené na posledných meraníach vzdialeností a uhlov.

Výsledky vytýčenia

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R86</th>
</tr>
</thead>
<tbody>
<tr>
<td>dVýč</td>
<td>-3.637 m</td>
</tr>
<tr>
<td>dSev</td>
<td>-3.514 m</td>
</tr>
<tr>
<td>dVýš</td>
<td>-0.657 m</td>
</tr>
</tbody>
</table>

Ulož

Uloženie hodnôt vytýčenia a posledných rozdielov.

D. Bod

Zadanie ďalšieho bodu.
P0 je pozícia pristroja po postavení. Ak sa meria k pozícii reflektora, ktorá neleží presne v smere k novému bodu, zobrazia sa zodpovedajúce korekcie smerom vpred, späť (dobzaďa), vľavo, vpravo k novému bodu P1.

Ukladanie dát z vytýčenia so súradnicami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severná súradnica (zadaná)</td>
<td>Zadaná severná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Východná súradnica (zadaná)</td>
<td>Zadaná východná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>Severná súradnica (nameraná)</td>
<td>Nameraná severná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
<tr>
<td>Východná súradnica (nameraná)</td>
<td>Nameraná východná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>dSev (dN)</td>
<td>Rozdiel severných súradníc, na základe referenčného systému súradnic. dSev (dN) = severná súradnica (nameraná) – severná súradnica (zadaná)</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdiel vo výške. dVýš = výška (nameraná) – výška (zadaná)</td>
</tr>
<tr>
<td>dVých (dE)</td>
<td>Rozdiel východných súradníc, na základe referenčného systému súradnic. dVých (dE) = východná súradnica (nameraná) – východná súradnica (zadaná)</td>
</tr>
</tbody>
</table>

UPOZORNENIE

Horizontálne vytýčenie so súradnicami sa v postupe rovná vytýčeniu vychádzajúcemu zo stavebných osí s výnimkou toho, že namiesto dĺžkových a priečnych vzdialeností sa ako výsledky zobrazujú alebo zadávajú súradnice, prípadne rozdiely súradnic.

11.2 Vertikálne vytýčenie (V-vytýčenie)

11.2.1 Príspôsobenie vertikálneho vytýčenia (V-vytýčenia)

Vertikálnym vytýčením (označovaným aj ako V-vytýčenie) sa údaje z plánu prenášajú na vertikálnu referenčnú rovinu, ako napríklad stena, fasáda a podobne.

Tieto údaje sú bud rozmerné, ktoré sa vztahujú na stavebné osi na vertikálnej referenčnej rovine, alebo sú to pozície, ktoré sú opísané formou súradnic vo vertikálnej referenčnej rovine.

Údaje z plánu, prípadne pozície vytýčenia sa dajú zadať ako rozmery či vzdialenosti a so súradnicami, alebo sa dajú používať ako údaje, ktoré boli predtým prenesené z počítača.

Dodatočne je možné preniesť údaje z plánu z počítača (vo forme nákrusu CAD) na tachymeter a vybrať ich na vytýčenie na tachymetri, vo forme grafického bodu, alebo grafického prvku.

Vďaka tomu nie je nutné manipulácia s veľkými číslami alebo s veľkým množstvom čísel.
Typické využitie predstavuje: určovanie pozície upevňovacích bodov pri fasádach, stenách s koľajníčkami, rúrami a podobe.
Ako špeciálna aplikácia je ešte k dispozícii možnosť porovnať vertikálnu plochu s teoretickou plochou uvedenou v pláne a tak skontrolovať, či zadokumentovať rovinnosť.

Na spustenie aplikácie "Vertikálne vytýčenie" je potrebné v ponuke aplikácií zvoliť príslušné tlačidlo.

| Späť | Špeciálna aplikácia 1:
1. Výtyčenie bodov so stavebnými osami, to znamená osami na vertikálnej referenčnej rovine.
2. Výtyčenie bodov so súradnicami, prípadne bodmi na základe nákresu CAD.|

1.2.2 Vertikálne vytýčenie (V-čočenie) so stavebnými osami
Pri vertikálnom vytýčení so stavebnými osami sú osi definované meraním k dvom referenčným bodom, spolu s postavením stanice.

Postavenie stanice
Postavenie stanice sa určuje podľa možnosti centrálne / v stredne pred vertikálnou rovinou v takej vzdialenosti, aby bol podľa možnosti dobrý výhľad na všetky body.
Prístrojom sa pri postavení definuje nulový bod (1) systému referenčných osí a smer (2) vertikálnej referenčnej roviny.
Pozor
Referenčný bod (1) je rozhodujúcim bodom. V tomto bode je určená zvislá a vodorovná referenčná os, vo vertikálnej referenčnej rovine.

Optimálne postavenie, prípadne pozícia prístroja vznikne vtedy, keď pomer horizontálnej referenčnej dĺžky L_n k vzdialenosti $Prieč$ je v pomere $L_n : Prieč = 25 : 10$ až $7 : 10$, tak, aby zvieraný uhol bol v rozsahu $\alpha = 40^\circ - 100^\circ$.

UPOZORNENIE
Postavenie stanice (a príslušné nastavenie) je analogické ako postavenie "Voľnej stanice" so stavebnými osami, s tým rozdielom, že prvý referenčný bod určuje nulový bod systému stavebných osí na vertikálnej rovine a druhý referenčný bod určuje smer vertikálnej roviny k systému prístroja. V každom prípade sú osi bráné horizontálne alebo vertikálne od bodu (1).

Zadanie posunu osí
Na posunutie systému osi, prípadne "nulového bodu" na vertikálnej referenčnej rovine, sa zadávajú hodnoty posunu. Tieto hodnoty posunu môžu posunúť nulový bod systému osí v horizontálnom smere doľava (-) a doprava (+), vo vertikálnom smere nahor (+) a nadol (-) a celú rovinu smerom dopredu (+) a do zadu (-). Posuny osí môžu byť potrebné vtedy, keď "nulový bod" nemôže byť priamo zazieštený ako prvý referenčný bod, a preto je potrebné použiť existujúci referenčný bod a potom sa musí vykonať posun na os, zadaním vzdialenosti ako hodnôt posunu.

Prerušenie a návrh na predchádzajúce zobrazenie.

Potvrdenie zadania a pokračovanie zobrazenia.

Zadanie pozície vytýčenia
Zadanie hodnôt vytýčenia ako rozmeru vo vzhľade na referenčnú os definovanú v postavení stanice, prípadne stavebnú os na vertikálnej rovine.
Prerušenie a návrat na úvodné menu.
Zadanie posunov referenčnej roviny.
Potvrdenie zadania a pokračovanie ďalšieho zobrazenia a vyrovnanie prístroja k vytyčovanej rovine.

Smer k bodu vytyčenia
Prístroj sa s týmto zobrazením zarovnáva k vytyčovanému bodu tak, že prístroj sa otáča dovtedy, kým červený ukazovateľ smeru nestojí na "nule".
V takomto prípade ukazuje nítkový kríž do smeru k vytyčovanému bodu.
Potom sa bude ďalekohľad pohybovať vo vertikále, až pokiaľ nebudú obidva trojuholníky vykazovať nijakú výplň.

UPOZORNENIE
Pri vyplnení horného trojuholníka pohnite ďalekohľad nadol. Pri vyplnení spodného trojuholníka pohnite ďalekohľad nahor.

Ak je to možné, môže sa osoba prostredníctvom pomôcky na navádzanie pri cieľi, sama naviesť do cieľovej linie.

Korekcie vytyčenia
Zobrazení korekcie sa rosiť cieľa alebo cieľ navádza hore, dolu, vľavo, vpravo.
Pomocou zmeny vzdialenosti sa taktiež vykonáva korekcia smerom vpred, prípadne späť (dozadu).
Po každom meraní vzdialenosti sa zobrazené korekcie aktualizujú, aby po jednotlivých krokoch došlo k približeniu k cieľovej pozícií.
Zobrazované pokyny týkajúce sa smeru pohybu meraného cieľa.

<table>
<thead>
<tr>
<th>Smer</th>
<th>Pokyny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vpred</td>
<td>Nosič cieľa, prípadne cieľ sa musí pohybovať ďalej do smeru referenčnej roviny.</td>
</tr>
<tr>
<td>Späť</td>
<td>Nosič cieľa, prípadne cieľ sa musí pohybovať ďalej smerom počas referenčnej roviny.</td>
</tr>
<tr>
<td>Vľavo</td>
<td>Nosič cieľa, prípadne cieľ sa musí pohybovať ďalej smerom smerom k referenčnej rovine.</td>
</tr>
<tr>
<td>Vpravo</td>
<td>Nosič cieľa, prípadne cieľ sa musí pohybovať ďalej smerom od referenčnej roviny.</td>
</tr>
<tr>
<td>Hore</td>
<td>Nosič cieľa, prípadne cieľ sa musí pohybovať ďalej smerom nahor.</td>
</tr>
<tr>
<td>Dolu</td>
<td>Nosič cieľa, prípadne cieľ sa musí pohybovať ďalej smerom nadol.</td>
</tr>
</tbody>
</table>

Výsledky vytýčenia

Zobrazenie rozdielov vytýčení v dĺžke, výške a offsete sa zakladá na posledných meraných vzdialenostiach a uhlov.

<table>
<thead>
<tr>
<th>Výsledky vytýčenia</th>
<th>Bod ID</th>
<th>dL̅N</th>
<th>dV̅yš</th>
<th>dPric</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>1.226 m</td>
<td>-7.244 m</td>
<td>2.290 m</td>
<td></td>
</tr>
</tbody>
</table>

Ukladanie dát z vytýčenia so stavebnými osami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dĺžka (zadaná)</td>
<td>Zadaná dĺžková vzdialenosť vzťahujúca sa na referenčnú os.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Offset (zadaný)</td>
<td>Offset zadany vertikálne na referenčnej roviny.</td>
</tr>
<tr>
<td>Dĺžka (nameraná)</td>
<td>Nameraná dĺžková vzdialenosť vzťahujúca sa na referenčnú os.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
</tbody>
</table>
11.2.3 Vytýčenie so súradnicami

Súradnice je možné použiť vtedy, keď sú napríklad referenčné body dostupné ako súradnice a body na vertikálnej rovine sú taktiež dostupné ako súradnice v tom istom systéme.

Takýto prípad nastáva napríklad vtedy, keď bola vertikálna rovina predtým vymeraná s použitím súradníc.

Zadanie bodov vytýčenia

Zadanie hodnôt vytýčenia so súradnicami bodov sa dá vykonať troma rôznymi spôsobmi:

1. Manuálnym zadanim súradníc bodov.
2. Voľbou súradnúcich bodov zo zoznamu s uloženými bodmi.
3. Voľbou súradnícich bodov zo grafiky CAD s uloženými bodmi.

<table>
<thead>
<tr>
<th>Zadanie hodnôt vytýčenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
</tr>
<tr>
<td>v.rfl</td>
</tr>
<tr>
<td>Dĺžka</td>
</tr>
<tr>
<td>Výška</td>
</tr>
<tr>
<td>Prieč</td>
</tr>
</tbody>
</table>

Zruš | Posuny | OK

Zadanie hodnôt vytýčenia (s nákresom CAD)

Tu sa vyberajú body vytýčenia priamo zo grafiky typu CAD.

Prítom je bod už uložený ako trojrozmerný alebo dvojrozmerný a v závislosti od toho sa aj extrahuje.

<table>
<thead>
<tr>
<th>Zvolte z plánu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
</tr>
<tr>
<td>Plán</td>
</tr>
<tr>
<td>Označ</td>
</tr>
<tr>
<td>Spät</td>
</tr>
</tbody>
</table>

Výsledky vytýčenia so súradnicami

Zobrazenie rozdielov vytýčenia v súradnicíách je založené na posledných meraníach vzdialeností a uhlov.
Návrat

Zadanie ďalšieho bodu.

Ukladanie dát z vytýčenia so súradnicami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severná súradnica (zadaná)</td>
<td>Zadaná severná súradnica vztahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Východná súradnica (zadaná)</td>
<td>Zadaná východná súradnica vztahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>Severná súradnica (nameraná)</td>
<td>Nameraná severná súradnica vztahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
<tr>
<td>Východná súradnica (nameraná)</td>
<td>Nameraná východná súradnica vztahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>dSev (DN)</td>
<td>Rozdiel severných súradníc, na základe referenčného systému súradníc. dSev (DN) = severná súradnica (nameraná) – severná súradnica (zadaná)</td>
</tr>
<tr>
<td>dvys</td>
<td>Rozdiel výšky. dvys = výška (nameraná) – výška (zadaná)</td>
</tr>
<tr>
<td>dvVých (dE)</td>
<td>Rozdiel východných súradníc, na základe referenčného systému súradníc. dvVých (dE) = východná súradnica (nameraná) – východná súradnica (zadaná)</td>
</tr>
</tbody>
</table>

UPOZORNENIE
Vertikálne vytýčenie vždy používa trojrozmerné opisy bodov. Pri vytyčovaní s využitím stavebných osí a vytyčovaní s využitím súradnic sa používajú rozmerky dĺžky, výšky a offsetu.

UPOZORNENIE
Ďalšie zobrazenia sú totožné so zobrazeniami v predchádzajúcej kapitole.

11.3 Premeranie

11.3.1 Princíp premerania
V principe možno premeranie chápať ako aplikáciu, ktorá pracuje opačne ako Horizontálne vytýčenie. Premeraním sa porovnávajú existujúce pozície s ich plánovanými pozíciami a odchyliky sa zobrazia a uložia. V závislosti od postavenia stanice sa dajú údaje z plánu, prípadne porovnávacie pozície - ako sú rozmerky či vzdialenosť, používať ako súradnice alebo body s grafikou.
Kedy sa presne z počítača údaje plánu, vo forme náreku CAD, na tachometer a vybenú sa na tachometri ako grafický bod či grafický prvok na vytýčenie, nebude nutná manipulácia s veľkými číslami alebo s veľkým množstvom čiš. Typickými spôsobmi využitia sú: kontrola stien, stĺpov, debníení, veľkých otvorov a mnoho iného. Na tento účel je vykonávané porovnanie s plánovanými pozíciami a rozdiely sa zobrazujú alebo ukладajú priamo na mieste.
Na spustenie aplikácie "Premeranie (Premer.)" je potrebné vybrať v ponuke aplikácie príslušné tlačidlo.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vytvorenie H</td>
<td>Späť</td>
<td>Ďalej</td>
<td>Premer.</td>
</tr>
<tr>
<td>Premer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vytvorenie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meranie rozpätia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Po vyvolaní aplikácie nasledujú zobrazenia projektov, prípadne výber projektu a voľba príslušnej stanice či postavenia stanice.

Po postavení stanice sa spustí aplikácia "Premeranie (Premer.)". V závislosti od voľby stanice sú dve možnosti pri určení premeriavaného bodu:

1. Premeranie bodov so stavebnými osami.
2. Premeranie bodov so súradnicami a/alebo bodov na základe nákresu CAD.

11.3.2 Premeranie so stavebnými osami

Pri premeraní so stavebnými osami sa hodnoty premerania, ktoré je potrebné zadať, vždy vzťahujú na tú stavebnú os, ktorá bola zvolená ako referenčná os.

Zadanie pozície premerania

Zadanie pozície premerania ako rozmeru vo vzťahu na stavebnú os definovanú v postavení stanice, prípadne stavebnú os, na ktoré je postavený prístroj. Zadávanými hodnotami sú dĺžkové a priečne vzdialenosti vo vzťahu na definovanú stavebnú os.
Zadávanie dát premeriavania

Aj naklonať, zobrazenie dát premeriavania

Bod ID	H1[n]

vrfl | 0.400 m [2]

Dĺžka | 0.000 m [2]

Prieč | 0.000 m [2]

Výš | 0.000 m [2]

Návrat napredchádzajúceho zobrazenia.

Potvrdenie zadania a pokračovanie dálkeho zobrazenia na vyrovnanie prístroja k vytváranému bodu.

UPOZORNENIE

Hodnoty premerania na stavebnej osi v smere dopredu a dozadu od stanice s prístrojom sú hodnotami dĺžky a hodnoty premerania ležiace napravo a naľavo od stavebnej osi sú priečnymi hodnotami. Hodnoty dopredu a napravo sú kladnými hodnotami, hodnoty dozadu a naľavo sú zápornými hodnotami.

Smer k bodu premerania

Prístroj sa s týmto zobrazením vyrába k premeriavanejmu bodu tak, že prístroj sa otáča dovtedy, kým červený ukazovateľ smeru nestojí na "nule" a pod ním ležiace číselné zobrazenie nestojí presne a v dostatočnej miere na "nule".

V tomto prípade smeruje nitkový kríž do smeru k bodu premerania, aby bolo možné navádzanie nosiča reflektora a identifikácia bodu premerania.

UPOZORNENIE

Pri bodoch na zemi existuje dodatočne aj možnosť, že nosič reflektora sa môže z veľkej časti navážať do cieľovej linie sám, prostredníctvom pomoci pri navádzaní.

Výrovnacie a meranie

Aj naklonať, výrovnacie a meranie bod

vrfl | 0.400 m [2]

Bod ID | R85

Hu | 47° 34' 46"

Hv | 8.345 m

Výsledky premerania

Zobrazenie pozičných rozdielov v dĺžke, prieč, a výške založené na posledných meraníach vzdialenosť a uhlov.
Výsledky premeriavania

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vyťaženia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dL n</td>
<td>Zadaná dĺžková vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>dPrieč</td>
<td>Zadaná priečná vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>dVýška</td>
<td>Zadaná výška.</td>
</tr>
<tr>
<td>dL n</td>
<td>Nameraná dĺžková vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>dPrieč</td>
<td>Nameraná priečná vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>dVýška</td>
<td>Nameraná výška.</td>
</tr>
<tr>
<td>dPrieč</td>
<td>Rozdiel v priečnej hodnote, na základe stavebnej osi. dPrieč = prieč. (nameraná) – prieč. (zadaná)</td>
</tr>
<tr>
<td>dL n</td>
<td>Rozdiel v hodnote dĺžky, na základe stavebnej osi. dLn = dĺžka (nameraná) – dĺžka (zadaná)</td>
</tr>
<tr>
<td>dVýška</td>
<td>Rozdiel vo výške: dVýš = výška (nameraná) – výška (zadaná)</td>
</tr>
</tbody>
</table>

11.3.3 Premeranie so súradnicami

Zadanie bodu premerania

Zadanie so súradnicami bodov sa dá vykonať troma rôznymi spôsobmi:
- **Manuálnym zadaním súradnic bodov.**
- **Výberom súradnic bodov zo zoznamu s uloženými bodmi.**
- **Výberom súradnic bodov z grafiky CAD s uloženými bodmi.**
Zadávanie dát premeriavania

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R82</th>
</tr>
</thead>
<tbody>
<tr>
<td>v rfl</td>
<td>0.400 m</td>
</tr>
<tr>
<td>Výc</td>
<td>1.000 m</td>
</tr>
<tr>
<td>dSev</td>
<td>2.000 m</td>
</tr>
<tr>
<td>Vyš</td>
<td>2.000 m</td>
</tr>
</tbody>
</table>

Zadanie pozície premerania (s nákresom CAD)

Tu sa volia body premerania priamo z nákresu CAD. Pritom je bod už uložený ako trojrozmerný alebo dvojrozmerný a v závislosti od toho sa aj extrahuje.

Zvolte z plánu

<table>
<thead>
<tr>
<th>Oznámenie zvoleného bodu z grafiky.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pridanie a návrat na zadané body premerania.</td>
</tr>
<tr>
<td>Vyber bodu zo zoznamu.</td>
</tr>
<tr>
<td>Manuálne zadané súradnice.</td>
</tr>
<tr>
<td>Potvrdenie vybraného bodu.</td>
</tr>
</tbody>
</table>

UPOZORNENIE

Ak je v postavení stanice (a v príslušných nastaveniach) zvolená voľba bezvýšok, budú dátá o výške a všetky relevantné zobrazenia potlačené.

UPOZORNENIE

Dálešie zobrazenia sú totožné so zobrazeniami v predchádzajúcej kapitole.

Výsledky vytýčenia so súradnicami

Zobrazenie rozdielov vytýčenia v súradninách je založené na posledných meraniach vzdialeností a uhlov.

Výsledky premeriavania

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R82</th>
</tr>
</thead>
<tbody>
<tr>
<td>dvyc</td>
<td>0.669 m</td>
</tr>
<tr>
<td>dSev</td>
<td>2.249 m</td>
</tr>
<tr>
<td>dvys</td>
<td>0.102 m</td>
</tr>
</tbody>
</table>

UPOZORNENIE

Ak je v postavení stanice (a v príslušných nastaveniach) zvolená voľba bezvýšok, budú dátá o výške a všetky relevantné zobrazenia potlačené.
Ukladanie dát z vytýčenia so súradnicami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severná súradnica (zadaná)</td>
<td>Zadaná severná súradnica vztahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Východná súradnica (zadaná)</td>
<td>Zadaná východná súradnica vztahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>Severná súradnica (nameraná)</td>
<td>Nameraná severná súradnica vztahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
<tr>
<td>Východná súradnica (nameraná)</td>
<td>Nameraná východná súradnica vztahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>dSev (dN)</td>
<td>Rozdiel severných súradníc, na základe referenčného systému súradníc. dSev (dN) = severná súradnica (nameraná) – severná súradnica (zadaná)</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdiel vo výške. dVýš = výška (nameraná) – výška (zadaná)</td>
</tr>
<tr>
<td>dVých (dE)</td>
<td>Rozdiel východných súradníc, na základe referenčného systému súradníc. dVých (dE) = východná súradnica (nameraná) – východná súradnica (zadaná)</td>
</tr>
</tbody>
</table>

UPOZORNENIE

Premeranie so súradnicami sa v postupe rovná premeraniu vychádzajúcemu zo stavebných osí s výnimkou toho, že namiesto dĺžkových a priečnych vzdialeností sa ako výsledky zobrazujú alebo zadávajú súradnice, prípade rozdiely súradnic.

11.4 Meranie rozpätia

11.4.1 Princíp merania rozpätia

S aplikáciou Meranie rozpätia (Meranie rozpáť) sa merajú dva voľne ležiace body v priestore, aby sa určila horizontálna vzdialenosť, šikmá vzdialenosť, výškový rozdiel a sklon medzi týmito bodmi.

K určovaniu sklonu s meraním rozpätia

<table>
<thead>
<tr>
<th>Ponuka aplikácie</th>
<th>Späť</th>
<th>Návrat na predchádzajúce zobrazenie.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Späť</th>
<th>Dalšie</th>
<th>Pokračovanie ďalej na výber ďalších aplikácií.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vytvorená aplikácie na Meranie rozpáťa.

Po vyvolaní aplikácie nasleduje zobrazenie projektov, prípadne výber projektu.

362
Nastavovanie stanice tu nie je potrebné.
Na určenie rozšítenia je možné použiť dve rôzne možnosti merania:
1. Výsledky medzi prvým a všetkými ďalšími meranými bodmi.
2. Výsledky medzi dvomi meranými bodmi.

1. Možnosť – vzťah na základný bod

2. Možnosť – vzťah medzi prvým a druhým bodom

Pôsobenie bodmi na zemi
Po meraní prvého bodu sa všetky ďalšie merané body vzťahujú na prvý bod.

2. Možnosť – vzťah medzi prvým a druhým bodom

Pôsobenie bodmi na zemi
Meranie prvých dvoch bodov.
Po výsledku si zvoľte novú liniu, ako aj nový základný bod a zmerajte nový druhý bod.
11.5 Meranie a zaznamenanie
11.5.1 Princíp merania a zaznamenania
Meraním a zaznamenávaním sa merajú body, ktorých pozícia nie je známa. Vzdialenosť sa môžu meráť laserom, ak je možné nasmerovať laserový lúč priamo na povrch. Pozície bodov sa vypočítajú podľa postavenia stanice, buď so rozmernými stavebnými osami, alebo so súradnicami a/alebo aj s vypočítaním výšok. Namerané body môžu byť vybrané rôznymi označeniami bodov a uložené.
UPOZORNENIE
S každým uložením sa názov bodu automaticky zvýšil o hodnotu "1".

Uložené dáta bodov možno preniesť na PC a znárnit a ďalej spracovať alebo vytištiť (na dokumentačné účely a archíváciu) v programe CAD alebo v podobných systémoch.
Na spustenie aplikácie "Meranie a zaznamenanie" je potrebné v ponuke aplikácií zvoliť príslušné tlačidlo.

Po vyvolaní aplikácie nasledujú zobrazenie projektov, prípadne výber projektu a výber príslušnej stanice či postavenia stanice.

Po vykonaní postavení stanice sa spustí aplikácia "Meranie a zaznamenanie". V závislosti od volby k postaveniu stanice sú dostupné dve možnosti pri určovaní systému bodov:

1. Pozície bodov v závislosti od stavebnej osi
2. Pozície bodov v závislosti od systému obvodníc

11.5.2 Meranie a zaznamenanie so stavebnými osami
Pozície meraných bodov sa vzťahujú na stavebnú os, ktorá bola použitá na referenciu. Pozície sú opísané dĺžkovým rozmereňm na stavebné osi a priečnou vzdialenosťou v pravom uhle.

Po je pozícia prístroja po postavení.
Ak sa k cielem zmerajú uhly a vzdialenosti, vypočítajte alebo uloží sa príslušné vzdialenosť stavebných osi Ln a Prieč.
Meranie bodov so stavebnými osami

Po ukončení nastavovania postavenia stanice je možné bezprostredne začať s meraním.

<table>
<thead>
<tr>
<th>Zmerané bodov</th>
<th>Bod ID</th>
<th>Hu</th>
<th>Vu</th>
<th>Hv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Záhradká</td>
<td>1</td>
<td>131° 40' 47"</td>
<td>74° 50' 08"</td>
<td>4.403 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zmerané body</th>
<th>Bod ID</th>
<th>Ln</th>
<th>Prieč</th>
</tr>
</thead>
<tbody>
<tr>
<td>Záhradká</td>
<td>1</td>
<td>0.263 m</td>
<td>0.000 m</td>
</tr>
</tbody>
</table>

Prerušenie a návrat na ponuku pre výber.

Uloženie hodnoty zobrazené na displeji pre horizontálnu vzdialenosť, horizontálny uhol a vertikálny uhol.

Zmerať a uložiť horizontálnu vzdialenosť, horizontálny uhol a vertikálny uhol.

Zmeranie vzdialenosti.

Prepnutie zobrazovania na vzdialenosti osi.

Prepnutie zobrazovania na hodnoty uhlov.

11.5.3 Meranie a zaznamenanie so súradnicami

Pozície meraných bodov sa vzťahujú na rovnaký systém súradnic, v ktorom bolo vykonané postavenie stanice a tieto pozície sú opísané hodnotami súradnic E až Y, N alebo X a Výška výšky.

PO je pozícia prístroja po postavení.
Zmená sa uhly a vzdialenosti k cílom a vypočítajú a uložia sa príslušné súradnice.

Meranie bodov so súradnicami
Nasledujúce zobrazenia možno prepínat medzi zobrazovaním uhlov a súradnic.
Zmerajte body

Prerušenie a návrat na úvodné menu.

Vyvolanie merania vrátane uloženú dát. ID bodu (znázornej sa zvýšia o "1".

Zmeranie vzdialenosť.

Zobrazenie súradníc.

Prepnutie zobrazenia na hodnoty uhlov.

Uložiť hodnoty zobrazené na displeji pre horizontálnu vzdialenosť, horizontálny uhol a vertikálny uhol.

UPOZORNENIE

A kj evp o s t a v e n ís t a n i c e(avp r í s l u š ných nastaveniach) zvolené nastavenie bez výšok, budú dáta o výške a všetky relevantné zobrazenia potlačené.

UPOZORNENIE

Zmeraní vzdialenosť sa zafixuje hodnota pre horizontálnu vzdialenosť. Ak sa daľehoľad potom ešte pohne, zmenia sa len hodnoty pre horizontálny a vertikálny uhol.

Niekedy môže byť ťažké, alebo dokonca aj úplne nemožné, presne zmerať niektorý bod (napríklad stred stĺpu alebo stromu). V takomto prípade zmerajte vzdialenosť k bodu, ležiacemu priečne.

1. Keď ste zacílieli na hodnoty priečne, zmerajte vzdialenosť k tomuto bodu.
2. Otočte daľehoľad a zacíli na samotný meraný bod, aby ste zmerali príslušný uhol.
3. Uložte si nameranú vzdialenosť k priečne ležiacemu bodu a uhol k samotnému bodu.

Uloženie dát z Merania a zaznamenania

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov meraného bodu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vých, Prieč.</td>
<td>Nameraná východná súradnica alebo priečna vzdialenosť k stavebnej osi</td>
</tr>
<tr>
<td>Sev, Dĺžka</td>
<td>Nameraná severná súradnica alebo dĺžková vzdialenosť v stavebnej osi</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška</td>
</tr>
</tbody>
</table>

11.6 Vertikálné vyrovnanie

11.6.1 Princíp vertikálného vyrovnania

S vertikálnym vyrovnaním je možné postaviť prvky v priestore kolmo alebo ich kolmo preniknut. Tu je potrebné spomenúť predovšetkým výhody pre kolné postavenia debrí pri stĺpoch alebo to, že je možné vykonávať vytýčenie alebo kontrolu kolmo nad sebou ležiacich bodov cez viacero poschodí.
UPOZORNENIE

V princípe sa kontroluje to, či sú dva merané body priestorovo kolmo nad sebou.

UPOZORNENIE

Merania sa môžu, v závislosti od potreby pri danom spôsobe použitia, vykonávať s alebo bez reflektorovej výtyčky.

Po vyvolaní aplikácie nasleduje zobrazenie projektov, prípadne výber projektu. Nastavovanie stanice tu nie je potrebné.

Merania k 1. referenčnému bodu

K 1. referenčnému bodu sa vykonáva meranie uhlov a vzdialeností. Vzdialenosť je možné meráť priamo k bodu alebo s použitím reflektorovej výtyčky, v závislosti od prístupu k 1. referenčnému bodu.

Merania k ďalším bodom

Meranie k ďalším bodom sa vždy vykonáva zmeraním uhlov a vzdialenosťí.
Po druhom a každom ďalšom meraní sa aktualizujú hodnoty korekcie v porovnaní k 1. referenčnému bodu v doleurovende nom zobrazení.

11.7 Meranie plochy

11.7.1 Princip merania plochy

Prístroj určuje zabranú horizontálnu alebo vertikálnu plochu z 99 po sebe nasledujúcich meraných bodov. Poradie merania bodov sa dá určiť v smere hodinových ručičiek alebo proti smeru hodinových ručičiek.

UPOZORNENIE

Bodov sa musia meriť tak, aby sa medzi meranými bodmi nekrižovali prepojovacie linie, inak sa plocha vypočíta nesprávne.

Ponuka aplikácie

Návrat na predchádzajúce zobrazenie.

Pokračovanie ďalej na výber ďalších aplikácií.

Vyvolanie aplikácie merania ploch.
UPOZORNENIE
Nastavovanie starúce tu nie je potrebné.

UPOZORNENIE
Horizontálna plocha sa vypočítava tak, že merané body sa premietne do horizontálnej roviny.

UPOZORNENIE
Vertikálna plocha sa vypočítava premietnutím meraných bodov do vertikálnej roviny. Vertikálna rovina je definovaná prvými dvomi meranými bodmi.

Merania na určovanie ploch
Body by sa mali meráť v takom poradí, aby obklopovali plochu.
Na účely výpočtu je plocha vždy uzatvorená od posledného k prvému meranému bodu.
Body sa musia meráť tak, aby sa medzi meranými bodmi nekrizovali prepojovacie linie, inak sa plocha vypočíta nesprávne.

11.8 Nepriame meranie výšok
11.8.1 Princíp nepriameho merania výšok
Nepriami meraním výšok sa určujú výškové rozdiely voči neprístupným miestam príp. bodom, ak tieto neumožňujú žiadne priame meranie vzdialenosti.

S použitím nepriameho merania výšok sa dá určiť takmer lubovoľná výška alebo hlbka, napríklad výšky vrcholov žeriav, hlby stavebných výkopov a mnoho iného.
UPOZORNENIE
Bezpodmienené je potrebné dbať na to, aby referenčný bod a ďalšie nepríístupné body ležali v jednej vertikálnej rovine.

Ponuka aplikácie

<table>
<thead>
<tr>
<th>Mer & Zazn</th>
<th>Plocha</th>
<th>V vyrôbni</th>
<th>Nepr. výška</th>
</tr>
</thead>
</table>

Po vyvolaní aplikácie nasleduje zobrazenie projektov, prípadne výber projektu. Nastavovanie stanice nie je v tomto bode potrebné.

11.8.2 Nepriame určovanie výšok

Meranie k 1. referenčnému bodu
K 1. referenčnému bodu sa vykonáva meranie uhla a meranie vzdialenosti. Vzdialenosť je možné merat priamo k bodu alebo s použitím reflektorovej výtyčky, v závislosti od prístupu k 1. referenčnému bodu.

Zmerajte Bod 1

<table>
<thead>
<tr>
<th>v.rfl</th>
<th>0,400 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vu</td>
<td>68° 35' 04"</td>
</tr>
<tr>
<td>Hv</td>
<td>3,851 m</td>
</tr>
</tbody>
</table>

Návrat na výber projektu.

Návrat na predchádzajúce zobrazenie.
Meranie k dalším bodom
Meranie k dalším bodom sa vykonáva len meraním vertikálného uhlia. Výškový rozdiel voči 1. referenčnému bodu sa zobrazuje kontinuálne.

<table>
<thead>
<tr>
<th>Zmerajte Bod 2</th>
<th>15/06/11</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N. Výš</td>
<td></td>
</tr>
<tr>
<td>Vv</td>
<td>68° 34' 53"</td>
<td>3.861 m</td>
</tr>
<tr>
<td>Hv</td>
<td>4.399 m</td>
<td></td>
</tr>
<tr>
<td>d/vyš</td>
<td>0.400 m</td>
<td>Ulož</td>
</tr>
</tbody>
</table>

Nové (ďalšie) nepriamé meranie výšok, založené na novom referenčnom bodovi.

11.9 Určenie bodu vo vzťahu k osi
11.9.1 Princíp aplikácie Bod k osi
Pomocou aplikácie “Bod k osi” sa dá určiť pozícia nejakého bodu (napríklad referenčného bodu) vo vzťahu k osi. Okrem toho sa dajú určovať body paralelné, v pravom uhol alebo v akomkoľvek ďalšom uhol, ako aj na existujúcej osi. Táto aplikácia je zaujímavá najmä vtedy, keď sa napríklad majú na lavici na vytyčovanie základov umiestniť klinec, na označenie paralelných osi na stavbe.

Aplikácia pozostáva z dvoch krokov:
1. Definovanie osi.
2. Výber alebo meranie referenčného bodu.

Ak je stanica postavená v režime súradnic/grafickom režime, dajú sa os a referenčný bod určiť priamo z pamäte. Ak stanica ešte nie je postavená, musí sa os určiť meraním počiatočného a koncového bodu osi. Referenčný bod sa určuje aj priamym meraním.

11.9.2 Určenie osi
Merie nie alebo výber prvého bodu osi

<table>
<thead>
<tr>
<th>Zmerajte Ref Pl 1</th>
<th>05/07/11</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bod ID</td>
<td>Lin.bod1</td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td>72° 53' 26"</td>
<td></td>
</tr>
<tr>
<td>Vu</td>
<td>76° 48' 45"</td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>4.399 m</td>
<td></td>
</tr>
<tr>
<td>Spät’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ďalšie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nanovo pomenovať bod na referenčnej osi, alebo vybrať z pamäte.
Návrat na orientačné meranie.
Spustenie merania k bodovi.
Prejsť ďalej na ďalší krok.
Merenie alebo vyber druhého bodu osi

<table>
<thead>
<tr>
<th>Zmerajte Ref Pt 2</th>
<th>05/07/1</th>
<th>19:03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID Lin.bod2</td>
<td>Štílka</td>
<td></td>
</tr>
<tr>
<td>Hu 88° 57' 20"</td>
<td>Spät</td>
<td></td>
</tr>
<tr>
<td>Vu 76° 49' 05"</td>
<td>Mer</td>
<td></td>
</tr>
<tr>
<td>Hv 4,318 m</td>
<td>Ďalej</td>
<td></td>
</tr>
</tbody>
</table>

Posunutie osi

Počiatočný bod osi sa dá presunúť, ak chcete použiť inú referenciu ako počiatok systému súradníc. Ak je zadaná hodnota kladná, posunie sa os dopredu, ak je záporná, posunie sa smerom dozadu. Počiatočný bod bude pri kladnej hodnote posunutý doprava, pri záporné hodnote smerom doľava.

<table>
<thead>
<tr>
<th>Posunutie ref línie</th>
<th>05/07/1</th>
<th>19:03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dĺžka 0.000 m</td>
<td>Spät</td>
<td></td>
</tr>
<tr>
<td>Prieč 0.000 m</td>
<td>Mer</td>
<td></td>
</tr>
</tbody>
</table>

Rotácia (otočenie) osi

Smerovanie osi sa dá otočiť okolo počiatočného bodu. Pri zadani kladných hodnôt sa os otoči v smere hodinových ručičiek, pri zadaní záporných hodnôt sa smerom proti smeru hodinových ručičiek.

<table>
<thead>
<tr>
<th>Zadávanie Uhlové jednotky</th>
<th>05/07/1</th>
<th>19:03</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 + - 4 5 6 ← → 7 8 9 0 .</td>
<td>Spät</td>
<td>OK</td>
</tr>
</tbody>
</table>

Nanovo pomenovať bod na referenčnej osi, alebo vybrať z pamäte.

Spät na meranie prvého bodu.

Spustenie merania k bodu.

Prejdť ďalej na ďalší krok.

Spät na predchádzajúce zobrazenie.

Návrat na predchádzajúce zobrazenie.

Manuálne zadať posun osi.

Otočiť os.

Prejdť ďalej na ďalší krok.

Návrat na predchádzajúce zobrazenie.

Potvrdiť rotáciu.
11.9.3 Kontrola bodov vo vzťahu k osi

Zmeranie alebo vyber referenčného bodu

<table>
<thead>
<tr>
<th>Výber n. mer. kont. bod</th>
<th>Vybrať bod z pamäte.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplik.Bod na lišku</td>
<td></td>
</tr>
<tr>
<td>Bod ID</td>
<td></td>
</tr>
<tr>
<td>Dĺžka</td>
<td>2.829 m</td>
</tr>
<tr>
<td>Prieč.</td>
<td>0.012 m</td>
</tr>
</tbody>
</table>

Spustenie merania k bodu.
Zobrazenie nameraných alebo vybraných bodov vo vzťahu k referenčnej osi.
Uložiť výsledky merania.
Nanovo určiť referenčnú os.

12 Dáta a manipulácia s nimi

12.1 Úvod
Tachymetre Hilti ukладajú dáta zasadné v internej pamäti. Dátní sa rozumejú hodnoty uhol a vzdialenosti, v závislosti od nastavení či aplikácie hodnoty vztahujúce sa na stavebné osi, ako je napríklad dĺžka a prieč., alebo súradnice. Pomocou PC-softvéru sa dajú dáta vymieňať s ostatnými systémami. V princípe je potrebné chlapať všetky dáta tachymetru ako dáta bodov, s výnimkou grafických dát, pri ktorých sú body spojené s grafikou. Na výber, resp. použitie sú tu k dispozícii zodpovedajúce body, nie grafika, ktorá je dostupná len ako doplňujúca informácia.

12.2 Dáta bodov
Dátní sa možno zmerané body alebo body, ktoré sú už dostupné. Tachymeter meria v zásade uhol a vzdialenosť. Tak sa každý bod, na ktorý je zacielený níklový križ alebo Laserpointer a kuchoremu je meraná vzdialenosť, vypočíta v systéme tachymetru ako trojrozmerný bod.

12.2.1 Body ako meracie body
Dáta merania sú namerané body, ktoré boli vytvorené a uložené na tachymetri ako body súradnic, z relevantných aplikácií, ako napríklad H-vytýčenie, V-vytýčenie, Premeranie (Permer.) a Meranie a zaznamenanie. Meracie body existujú v rámci jednej stanice iba jedenkrát. Keď sa rovnský názov opätovne použije ako meraci bod, je možné existujúci merací bod prepísať alebo k nemu zadať iný názov bodu. Meracie body nie je možné upravovať.

12.2.2 Body ako body súradnic
Keď sa pracuje v nejakom systéme súradnic, sú spravidla všetky pozície určené názvom bodu a súradnicami, na opísanie pozície bodu je však minimálne potrebný názov bodu a dve horeztálné hodnoty súradnic X, Y alebo E, N a pod. Výška vo všeobecnosti nie je závislá od hodnot súradnic XY.

Tachymeter využíva body ako body súradnic, tzv. kontrolne alebo fixné body a meracie body so súradnicami. Fixné body sú body s danými súradnicami, ktoré sa manuálne zadávajú na tachymetri alebo boli prenesené pomocou programu Hilti PROFI Layout, prostredníctvom pamätového média USB, alebo priamo dátovým káblom USB. Tieto fixné body môžu byť aj bodmi vytvorenými. Kontrolný bod (fixný bod) existuje v projekte iba raz.
Kontrolné a fixné body sa dajú na tachymetri upravovať, predpokladom však je, aby pri bode neboli pripojený žiadny grafický prvok.

12.2.3 Body s grafickými prvkami
Na prístroji je možné nechať načítať, znázorňovať a vyberať grafické údaje z prostredia CAD, a to s použitím programu Hilti PROFIS Layout. Systém Hilti umožňuje vytvárať body a grafické prvky z rôznych trás, s použitím programu Hilti PROFIS Layout a tieto dátia preniesť na tachymeter, prípadne ich použiť. Body s pripojenými grafickými prvkami nie sú možné upravovať na tachymetri, úprava sa vykonáva na počítači s programom Hilti PROFIS Layout.

12.3 Vytváranie dát bodov

12.3.1 S tachymetrom
Každé meranie vytvoria dátový záznam o meraní alebo vytvori merací bod. Meracie body sú buď definované len ako hodnoty uhlov a vzdialeností, názov bodu s hodnotami uhlov a vzdialeností, alebo ako názov bodu so súradnicami.

12.3.2 S programom Hilti PROFIS Layout
1. Vytvorenie bodov z rozmerov v pláne, prostredníctvom konštrukcie liníí, kriviek a znázornenie s grafickými prvkami
V programu "Hilti PROFIS Layout" sa dajú z rozmerov uvedených v pláne, prípadne zo vzdialenosti uvedených v stavebnom pláne, vygenerovať grafika, ktorá je akousi reprodukciou stavebného plánu. V počítačovom softvéri sa na tento účel plán graficky znova vytvorí na počítači v zjednodušenej podobe tak, aby line, krivky a pod. vznikli ako body s grafickým uložením. Taktiež je možné vytvárať tuškrivky, z ktorých sa dajú vytvoriť body, napríklad v pravidelných odstúpoch.

2. Vytvorenie bodov z importu CAD a dát, kompatibilných s dátami CAD
Pomocou programu "Hilti PROFIS Layout" sa dajú dátá ďalého, vo formátoch DXC alebo vo formáte DWG, kompatibilných s programom AutoCAD, prenášať priamo na počítač. Z grafických dát, povedzme liníi, kriviek a pod. sa vytvorí body. V programi Hilti PROFIS Layout je dostupná možnosť vytvoriť z grafických prvkov CAD dátvykonzových bodov, príčnešenkov liníí, stredových bodov úsekov, kruhových bodov a podobne. K taktov vytvoreným dátam body budú viditeľne uložené pôvodné grafické prvky za CAD. Dátá nachádzajúce sa v CAD môžu byť dostupné na rôznych "polohách". V programi "Hilti PROFIS Layout" sú tieto dátva vstavaním do prístroja zhrnuté na jednu "polohu".

UPOZORNENIE
Tu je obzvlášť potrebné dbať na to, aby sa pri organizácii dát na počítači, pred prenesením do prístroja, venovala zvýšená pozornosť hustote bodov, ktorá je očakávaná na konci procesu.

3. Import dát bodov z tabuliek alebo textových súborov
Dátá bodov je možné importovať z textových alebo XML-súborov do programu Hilti PROFIS Layout, upraviť ich a preniesť do tachymetra.

12.4 Pamäť dát

12.4.1 Interná pamäť tachymetra
Tachymeter Hilti ukladá v aplikácii dát, ktoré sú zodpovediacou spôsobom organizované. Dátá bodov a dátov merania sú v systéme organizované podľa projektov a staníc prístroja.

Projekt
K jednému projektu patri jedinečný blok kontrolných bodov (fixných bodov), prípadne bodov vytvorených. K jednému bodu môže patriť viac počet staníc.

Stanica s prístrojom plus orientácia (tam, kde je dôležité)
K jednej stanici patri vždy jedna orientácia. K jednej stanici patri meracie body s jednoznačným opisom bodov.

UPOZORNENIE
Jeden projekt je možné chápťi ako jeden súbor.
12.4.2 Pamäťové médium USB

Pamäťové médium USB slúži na výmenu dát medzi počítačom a tachometrom. **Nepoužívajte sa ako dodatočná pamäť pre dát.**

UPOZORNENIE

Ako aktívnapamäťpredáta na tachyometr risaždypoužívainterná pamäťtachometry.

13 Správca dát tachymetra

13.1 Prehľad

Správca dát poskytuje prístup k interne uloženým dátam v tachometri. Správca dát poskytuje nasledujúce možnosti:

- Vytvorenienového projektu, vymazanie a kopírovanie.
- Zadanie, upravovanie a vymazávanie kontrolných bodov, prípadne fixných bodov súradníc.
- Zobrazenie a vymazanie meracích bodov.

13.2 Výber projektu

Po spustení Správcu dát sa zobrazí zoznam projektov, ktoré sú dostupné v internej pamäti. Najskôr je potrebné zvoliť existujúci projekt, funkcie pre body a meracie bodov sa aktivujú až potom.
13.2.1 Fixné body (kontrolné body a body vytýčenia)

Po výbere príslušného projektu sa dajú - výberom voľby Body - zadávať body so súradnicami alebo je možné existujúce body so súradnicami upravovať alebo vymazať.

13.2.1.1 Zadávanie bodu so súradnicami

Manuálne zadanie názvu bodu a súradnic. Ak by už názov bodu existoval, zobrazí sa príslušné upozornenie na zmenu názvu bodu.

<table>
<thead>
<tr>
<th>Zvolte ručné zadávanie</th>
<th>Návrat na predchádzajúce zobrazenie.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Späť</td>
<td>Späť</td>
</tr>
<tr>
<td>Body</td>
<td>Body</td>
</tr>
<tr>
<td>Mer.Bod</td>
<td>Mer.Bod</td>
</tr>
</tbody>
</table>

13.2.1.2 Výber bodov zo zoznamu alebo grafického znázornenia

Dále sa zobrazí výber bodov zo zoznamu a grafiky.

UPOZORNENIE

Pri aktuálne použitej funkcií je príslušné tlačidlo "sivé".
13.2.2 Meracie body

Po výbere príslušného projektu je možné zobrazíť stanice s meniacimi bodmi, ktoré im prislúchajú. Prítom je možné aj stanicu, spolu so všetkými k nej prislúchajúcimi dátami merania, vymazať. Na vykonanie tohto úkonu je potrebné vybrať si pri zvolení projektu voľbu Meracie body.
13.2.2.1 Výber stanice
Dálej je znázornený výber stanice prostredníctvom manuálneho zadania názvu stanice, zo zoznamu a grafíky.

<table>
<thead>
<tr>
<th>Zvolte zo zoznamu</th>
<th>Bod ID</th>
<th>Výc</th>
<th>Sev</th>
<th>Výš</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fd_3</td>
<td>20.279</td>
<td>37.445</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Fd_4</td>
<td>6.279</td>
<td>37.444</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>GOW...</td>
<td>1.000</td>
<td>0.500</td>
<td>1.650</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerušenie a návrat na predchádzajúce zobrazenie.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výber bodu z plánu.</td>
</tr>
<tr>
<td>Vymazanie stanice a všetkých príslušných meracích bodov.</td>
</tr>
<tr>
<td>Výber bodu zo zoznamu.</td>
</tr>
<tr>
<td>Potvrdenie a prevzatie zadania.</td>
</tr>
</tbody>
</table>

13.2.2.2 Výber meracieho bodu
Po výbere stanice sa dá zadáť merací bod na manuálne vyhľadanie, alebo je možný výber zo zoznamu meracích bodov alebo z grafického zobrazenia.
13.2.2.3 Vymazanie a zobrazenie meracích bodov
Po výbere meracieho bodu je možné zobrazit hodnoty merania a súradnice a merací bod vymazať.

13.3 Vymazanie projektu
Predtým než sa projekt vymaže, zobrazí sa príslušný potvrzovací dialóg s možnosťou opätovného prezretia si podrobných informácií o projekte.

UPOZORNENIE
Ak sa projekt vymaže, budú straténé všetky dáta, ktoré súvisia s projektom.
13.4 Vytvorenie nového projektu

Při zadávaní nového projektu je potrebné dávať pozor na to, aby sa názov projektu nachádzal v pamäti iba raz.

<table>
<thead>
<tr>
<th>Nový názov projektu</th>
<th>Dátum</th>
<th>Čas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projekt: new_project</td>
<td>15/06/11</td>
<td>11:17</td>
</tr>
</tbody>
</table>

Zadanie názvu projektu.

Zruš

OK

Prerušenie a návrat na vyber projektu.

Potvrdenie a prevzatie zadania.

13.5 Kopírovanie projektu

Pри kopírovaní projektu je k dispozícii viacero rôznych možností:

- Z internej do internej pamäte.
- Z internej pamäte na pamäťové médium USB.
- Z pamäťového média USB do internej pamäte

Při procese kopírovania sa dá zmeniť názov projektu v cieľovej pamäti. Tak je možné projekt premenovať aj jeho skopírovaním a vytvoriť duplikát dát o projekte.

<table>
<thead>
<tr>
<th>Skopírujte projekt</th>
<th>Zdroj pamäť</th>
<th>Čiel pamäť</th>
<th>Projekt</th>
<th>Nový proj</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vnút pamáť</td>
<td>Vnút pamáť</td>
<td>Layout_New_Bldg</td>
<td></td>
</tr>
</tbody>
</table>

UPOZORNENIE

V prípade, že sa názov projektu už nachádza v cieľovej pamäti, je potrebné zvoliť iný názov, alebo vymazať existujúci projekt.

14 Výmena dát s PC

14.1 Úvod

Výmena dát medzi tachometrom a PC prebieha vždy v spojení s PC-programom Hiti PROFIS Layout. Prenesené dátu sú binárnymi dátami a bez týchto programov sa nedajú načítať. Výmena dát sa dá uskutočniť buď prostredníctvom dodaného dátového kábla USB alebo pamäťového média USB.
14.2 Hilti PROFIS Layout

Dáta sú v zásade vymieňané ako úplný projekt, čo znamená, že medzi tachymetrom Hilti a programom Hilti PROFIS Layout dochádza k výmene všetkých dát patriacich k jednému projektu. Projekt môže obsahovať samotné kontrolné alebo fixné body s grafikou alebo bez nej, alebo kombinovane, to znamená s kontrolnými alebo fixnými bodmi a meracími bodmi (dátami merania), vrátane výsledkov z príslušných aplikácií.

14.2.1 Typy dát

Dáta bodov (kontrolné body, prípadne body vytýčenia)

Kontrolné body sú súčasne aj bodmi vytýčenia a môžu byť vybavené grafickými prvками na uľahčenie identifikácie alebo nábrtnute situácie. Ak budú tieto body prenesené z PC na tachymeter s grafickými prvkami, budú sa tieto dáta na tachymetri zobrazovať s grafikou. Ak sa kontrolné body a body vytýčenia na tachymetri zadávajú neskôr manuálne, nie je možné k nim na tachymetri pridať alebo pridať nijaké grafické prvky.

Dáta merania

Meracie body, prípadne dáta merania a výsledky aplikácií sa zásadne prenášajú len z tachymetra do programu Hilti PROFIS Layout. Prenášané meracie body sa môžu prenášať a na ostatných systémoch ďalej spracovávať ako dáta bodov v textovom formáte s medzerou, s oddelením čiarkou (CSV) alebo v iných formátoch, ako je DXF a AutoCAD DWG. Výsledky aplikácií, ako sú napríklad rozdiely vytýčenia, plošné výsledky a podobne môžu byť programom Hilti PROFIS Layout vytyčené v textovom formáte ako “záznamy”.

Zhrnutie

Medzi tachymetrom a programom Hilti PROFIS Layout sa dajú vzájomne vymieňať nasledujúce dáta.

Z tachymetra do programu Hilti Profis Layout:

- Dáta merania: Názov bodu, uhol a vzdialenosť.
- Dáta bodov: Názov bodu, súradnice + výška.

Z programu Hilti Profis Layout do tachymetra:

- Dáta bodov: Názov bodu, súradnice + výška.
- Grafické údaje: Súradnice s grafickými prvkami.

UPOZORNENIE

Výmena medzi tachymetrom a inými PC-systémami nie je dostupná priamo, len prostredníctvom programu Hilti PROFIS Layout.

14.2.2 Výstup dát v programe Hilti PROFIS Layout (export)

Dáta sa ukladajú v nasledovujúcich aplikáciách a dajú sa pomocou programu Hilti PROFIS Layout exportovať v rôznych formátoch.
1. Horizontálne vytýčenie
2. Vertikálne vytýčenie
3. Premeranie
4. Meranie a zaznamenanie
5. Meranie plochy (plošný výsledok)

Výstupné dáta
Program Hilti PROFIS Layout čita dáta uložené totálou stanicou a extrahuje nasledujúce dáta.
1. Názov bodu, horizontálny uhol, vertikálny uhol, vzdialenosť, výška reflektora, výška prístroja
2. Názov bodu, súradnica Vých, súradnica Sev, výška
3. Výsledky aplikácie, ako sú rozdiely vytýčenia a plošné merania

Výstupné formáty
Format CSV	Čiarkou oddelené jednotlivé dáta.
Textový formát	Medzerou oddelené odseky tak, že jednotlivé dáta sa nachádzajú v stĺpcoch.
Format DXF	CAD-kompatibilný format vymeny textových dát.
Format DWG	Binárný format dát, kompatibilný s AutoCad.

14.2.3 Vstup dát do programu Hilti PROFIS Layout (import)
Vstupné dáta
S programom Hilti PROFIS Layout sa dajú čítať, konvertovať a prenášať na tachymeter (priamo cez kábel alebo na pamäťovom médiu USB) nasledujúce dáta:
1. Názvy bodov (fixné body) so súradnicami a výškami.
2. Poly-line (linie, krivky) z iných systémov

Vstupné formáty
Format CSV	Čiarkou oddelené dáta.
Textový formát	Medzerou oddelené odseky tak, že jednotlivé dáta sa nachádzajú v stĺpcoch.
Format DXF	Nákres CAD s linkami a oblúkmi ako všeobecný format vymeny dát CAD.
Format DWG	Nákres CAD s linkami a oblúkmi ako format, kompatibilný s AutoCAD.

15 Kalibrácia a nastavenie
15.1 Kalibrácia v teréne
Prístroj je pri expedícii z výroby správne nastavený. Na základe výkyvov teploty, pohybov pri príprave a zastavovaní je možné, že sa nastavené hodnoty prístroja časom menia. Preto je prístroj vybavený funkciou na kontrolu nastavených hodnôt a prípadnú opravu pomocou kalibrácie v teréne. Na tento účel sa prístroj bezpečne postaví s použitím kvalitého statívu a použije sa dobre viditeľný, presne identifikovateľný cieľ v rozmedzí ±3 stupňov voči horizontálne vo vzdialenosti cca 70 – 120 m. Potom sa vykoná meranie v polohle dálkaľšjuň 1 a v polohle dálkaľšjuň 2.

UPOZORNENIE
Tento postup je interaktívne podporovaný aj zobrazením na displeji tak, aby bolo potrebné iba sledovať pokyny.
Táto aplikácia kalibruje a nastaví nasledujúce tri osi prístroja:
- Cieľová os
- Vu-kolimácia (Vu kolim)
Dvojosový kompenzátor (obidve osi)

15.2 Vykonanie kalibrácie v teréne

UPOZORNENIE
Prístroj obsluhujte opatrne, aby sa zabránilo kmitaniu a otriasom.

UPOZORNENIE
Pri kalibrácii v teréne je potrebné postupovať mimoriadne starostlivo a vyžaduje sa presná práca. Nepresným cielením alebo otriasmi prístroja môžu byť zistené nesprávne kalibračné hodnoty, ktoré môžu ďalej spôsobovať chybné merania.

UPOZORNENIE
V prípade pochybností odovzdajte prístroj na kontrolu do servisu spoločnosti Hilti.

1. Prístroj postavte bezpečným spôsobom, s použitím dobrého statív.
2. V ponuke aplikácie si vyberte voľbu Konfigurácia.
4. Spustite proces kalibrácie alebo potvrďte zobrazené kalibračné hodnoty a nepokračujte na novú kalibráciu.
5. Vyberte si presne rozpoznané cieľ vo vzdialenosti 70 – 120 m a pozorne nažiďčite.

UPOZORNENIE: Vyhládajte si vhodný cieľ, na ktorý je možné zodpovedajúco dobre zacieliť.

UPOZORNENIE: Ak sa prístroj nenachádza v 1. pozícii dalekohľadu, objaví sa príslušná požiadavka na displeji.

<table>
<thead>
<tr>
<th>Meranie v polohe 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplenit konfiguráciu</td>
</tr>
</tbody>
</table>

Kalibrácia prístroja

Zamerajte cieľ v rozsahu ±3° k horizontálne.

<table>
<thead>
<tr>
<th>Hu</th>
<th>Vu</th>
</tr>
</thead>
<tbody>
<tr>
<td>333° 03' 03"</td>
<td>88° 57' 12"</td>
</tr>
</tbody>
</table>

Potom bude požiadané o zmenu na 2. pozíciu dalekohľadu.

7. Opatrne otáčte prístroj do 2. pozície dalekohľadu.
8. Znova zaciete na ten isty cieľ v rozmedzí ±3° voči horizontále.

UPOZORNENIE Tento úkon je podporovaný aj zobrazením na displeji tak, že sa zobrazia rozdiely pre zvislý kruh a vodorovný kruh. To slúži výlučne na upútanie na vyhľadávaní cieľa.

UPOZORNENIE Hodnoty by sa mali približovať "nule", prípadne by sa mali odtiaľšovať iba o niekoľko sekúnd, keď je na cieľ zacielené v druhej polohe dalekohľadu.

Pri úspešných meraníach v obidvoch pozíciách dalekohľadu sa zobrazia nové a pôvodné hodnoty nastavenia pre Vu-kolímacu (Vu kolím) a cieľovú os.

Nastavte nové hodnoty

<table>
<thead>
<tr>
<th>Zruš</th>
<th>Nastav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vu kolím (stáry)</td>
<td>-0° 00' 01"</td>
</tr>
<tr>
<td>Vu kolím (nový)</td>
<td>-0° 00' 02"</td>
</tr>
<tr>
<td>Cieľová os (stará)</td>
<td>0° 00' 00"</td>
</tr>
<tr>
<td>Cieľová os (nová)</td>
<td>0° 00' 04"</td>
</tr>
</tbody>
</table>

UPOZORNENIE Vyššie uvedeným postupom kalibrácie pre Vu-kolímacu a cieľovú os, boli takiež zistené aj nové hodnoty nastavenia pre 2-osový kompensátor.

Při preberaní nových kalibračných hodnôt sú preberané aj nové hodnoty nastavenia pre kompensátor.

15.3 Kalibračný servis Hilti

Prístroje odporúčame nechať pravidelne kontrolovať v kalibračnom servise Hilti, aby sa mohla zaistiť ich spôsobilivosť podľa noriem a právných predpisov.

Kalibračný servis Hilti je vám k dispozícii k dispozícii; kalibračcii však odporúčame nechať vykonat minimálne raz za rok.

V kalibračnom servise Hilti sa potvrdí, že špecifikácie kontrolovaného prístroja v deň kontroly zodpovedajú technickým údajom v návode na obsluhu. Po odchýlках od údajov výrobcu sa používané meracie prístroje opäť nanovo nastavia.

Certifikáty o kalibrácii sa vždy požadujú od firiem, ktoré sú certifikované podľa normy ISO 900X. Ďalšie informácie vám radi poskytnut vo vašom najbližšom zastupení spoločnosti Hilti.
16 Údržba a ošetrenie

UPOZORNENIE
Poškodené diely dajte vymeniť v servise firmy Hilti.

16.1 Čistenie a sušenie
Zosklasifikujte prach.
POZOR
Nedotýkajte sa skla prstami.
Prístroj čistite len čistou, mäkkou utierkou. V prípade potreby ju navlhčte čistým alkoholom alebo vodou.
POZOR
Nepoužívajte iné kvapaliny, než alkohol a vodu. Mohli by poškodiť plastové diely.
UPOZORNENIE
Poškodené diely dajte vymeniť v servise firmy Hilti.

16.2 Skladovanie
UPOZORNENIE
Prístroj neskladujte vo vlhkom stave. Pred uložením ho nechajte uschnúť.

UPOZORNENIE
Pred skladovaním prístroja, prepravné puzdro a príslušenstvovždyvyčistite.
UPOZORNENIE
Podľa hodobom skladovaní alebo dlhšej preprave vybavenie vykonajte pred použitím kontrolné meranie.
POZOR
Pokiaľ prístroj dlhšiu čas nepoužívate, vyberte akumulátory.

16.3 Preprava
POZOR
Pri zasielaní prístroja izolujte akumulátory alebo ich vyberte z prístroja.

Na prepravu alebo zasielanie vybavenia používajte prepravný kartón Hilti alebo obal s odobojnou kvalitou.

17 Likvidácia

VÝSTRAHA
Prípad, že vybavenie nepríslušne likvidujete môže dôjsť k nasledujúcim efektom:
Pri sa skladovaní plastových dielov vznikajú jedovaté plyny, ktoré môžu ohrozovať zdravie.
Ak sa akumulátor poškodia alebo silne zohrejú, môžu explodoovať a pritom spôsobiť otiny, popáleniny, poleptanie alebo môžu znečistiť životné prostredie.
Pri nedbalnej likvidácii umytíete znečistenie vybavenia nepovolanými osobami. Prípad, že sa môže dôjsť k šižkému poraneniu tretích osôb, ako aj k znečisteniu životného prostredia.

Iba pre krajiny EÚ
Elektronické meracie prístroje neodhadzujte do domového odpadu!
Podľa európskej smernici o opotrebovaných elektrických a elektronických zariadeniach v znení národnych predpisov sa opotrebované elektrické zariadenie/náradie/prístroje a použité akumulátory musia podrobiť separáciu a ekologickú recykláciu.
18 Záruka výrobcu prístrojov

Hilti ručí, že dodaný výrobok je bezchybný z hľadiska použitého materiálu a technologického postupu výroby. Táto záruka platí iba za predpokladu, že výrobok sa správne používa a obsluhuje, ošetruje a čistí v súlade s návodom na používanie Hilti a že je zaručená technická jednotnosť, t. j. že s výrobkom sa používa iba originálny spotrebný materiál, príslušenstvo a náhradné diely Hilti. Táto záruka zahŕňa bezplatnú opravu alebo bezplatnú výmenu chybných častí počas celé životnosti výrobku. Časti, podliehajúce normálnemu opotrebovaniu, do tejto záruky nespadajú. Uplatňovanie ďalších nárokov je vylúčené, pokiaľ takéto vylúčenie je v rozpore s národnými predpismi.

19 Upozornenie FCC (platné v USA) / upozornenie IC (platné v Kanade)

POZOR

Tento prístroj v testoch dodržal hraničné hodnoty, ktoré sú stanovené v odseku 15 ustanovení FCC (elektromagnetická a rádiová interferencia) pre digitálne prístroje triedy B. Tieto hraničné hodnoty predstavujú pre inštaláciu v obývaných oblastí dostatočnú ochranu pred rušivým vyžarovaním. Prístroj tohto druhu generuje a poúžívá rádiové frekvencie a môžu ich aj vyžarovať. Preto, ak nie sú inštalované a nepoužívané v súlade s pokynmi, môžu spôsobovať rušenie príjmu rádiového signálu.

Nemožno však zariadiť, že pri určitých inštaláciách ne-dôjde k rušeniu. Ak tento prístroj spôsobuje rušenie príjmu rádiového alebo televízneho signálu, čo možno zistiť vypnutím a opätovným zapnutím prístroja, odporúčame používateľovi odstrániť rušenie pomocou nasledujúcich opatrení:

- Nanovnastaviteľ a opätovné zapnutie prístroja
- Zváčšenie vzdialenosť medzi prístrojom a prijímačom
- Požiadajte o pomoc predajcu alebo skúseného rádio- oftelevízneho technika.

UPOZORNENIE

Zmeny alebo úpravy, ktoré nie sú výslovné povolené spoločnosťou Hilti, môžu obmedziť práva používateľa na uvedenie prístroja do prevádzky.
20 Vyhlášenie o zhode ES (originál)

Označenie: Tachymeter
Typové označenie: POS15/18
Generácia: 01
Rok výroby: 2010

Na vlastnú zodpovednosť vyhlasujeme, že tento výrobok je v súlade s nasledujúcimi smernicami a normami:
2011/65/EÚ, 2006/95/EG, 2004/108/EG.

Hilti Corporation, Feldkircherstrasse 100, FL-9494 Schaan

Paolo Luccini
Head of QA Quality and Process Management
Business Area Electric Tools & Accessories
01/2012

Matthias Gillner
Executive Vice President
Business Area Electric Tools & Accessories
01/2012

Technická dokumentácia u:
Hilti Entwicklungsgesellschaft mbH
Zulassung Elektrowerkzeuge
Hiltistrasse 6
86916 Kaufering
Deutschland

Index

A
Akumulátor 296, 300, 314, 316
POA 80 300
vloženie a výmena 296, 314
Atmosférické korekcie . 297, 325
Atmosférické vplyvy 297, 326

B
Bod k ose 297, 372
Body vytýčenia 298, 377

C
Cieľ 296, 310
Čas a dátum 296, 323

D
Dátové body 296, 312
Dotyková obrazovka
rozdelenie 296, 315
veľkosť 296, 315
Dotyková obrazovka (Touchscreen)
alfanumerická klávesnica . 296, 316
numerická klávesnica 296, 315

E
Elektronická ibeta 296, 325

F
Fixný bod 298, 377
Funkčné tlačidlá 296, 314

H
Hilti PROFIS Layout 298, 382
vstup dát (import) 298, 383
výstup dát (export) 298, 382
Horizontálne vytýčenie
(H- vytýčenie) 297, 344

I
Indikácia sklonu
zvisle 296, 320
Informácia o projekte 297, 328

K
Kalibrácia v teréne 298, 383-384
Kalibračný servis Hilti 298, 386

všeobecné ovládacie prvky 296, 316
Dvojosový kompenzátor 296, 309
<p>| Konfigurácia | 296, 321 |
| Kontrola bodov | 297, 374 |
| vo vzťahu k osi | 296, 314 |
| Kontrolne body | 298, 377 |
| Korekcia | 297, 326 |
| atmosférické vplyvy | 297, 326 |
| L | 295 |
| Laserová olovnicla | 296, 312, 325 |
| Laserpointer | 296, 312 |
| indikácia stavu | 296, 316 |
| M | 295 |
| Meraci bod | 296, 378 |
| vymazanie a zobrazenie | 290 |
| Merania výšok | 296, 311 |
| Meranie a zaznamenanie | 297, 364 |
| so stavebnymi osami | 297, 365 |
| so súradnicami | 297, 366 |
| Meranie plochy | 297, 369 |
| Meranie rozpáta | 297, 362 |
| Meranie vzdušnosti | 296, 309 |
| N | 290 |
| Nabíjačka POA 82 | 300 |
| Nepriame určovanie výšok | 297, 370-371 |
| O | 295 |
| Objektív | 296, 319-320 |
| Okulár | 295 |
| Osvetlenie displeja | 296, 325 |
| Ovládaci panel | 296, 314 |
| P | 290 |
| POA 50 | 300 |
| reflexorová výtyčka (s metrickymi jednotkami) | 300 |
| POA 51 | 301 |
| reflexorová výtyčka (s imperiálnymi jednotkami) | 301 |
| POA 80 | 300 |
| akumulátor | 300 |
| POA 82 | 300 |
| nabíjačka | 300 |
| POAW-4 | 301 |
| reflexná fólia | 301 |
| Polohy dalekohľadu | 296, 307 |
| Pomoc pri navádzaní | 295-296, 312, 324 |
| Ponuka funkcií | 296, 324 |
| FNC | 296, 324 |
| Postavenie prístroja | 296, 317 |
| nad nórky a pomocou laserovej olovnice | 296, 318 |
| Pozícia stanice | 335 |
| Premeranie | 297, 357 |
| so stavebnymi osami | 297, 358 |
| so súradnicami | 297, 360 |
| Princip merania | 296, 309 |
| Prístroj postavenie | 296, 317 |
| Projekt | 297, 326 |
| kopirovanie | 296, 381 |
| výber | 298, 376 |
| vymazanie | 296, 380 |
| vytvorenie nového | 297-298, 327, 381 |
| Projekty | 297, 326 |
| R | 300 |
| Reflektorová výtyčka POA 50 | 296, 300, 310 |
| POA 51 | 301 |
| Reflexná fólia POAW-4 | 301 |
| S | 300 |
| Síťový adaptér POA 81 | 300 |
| Statív PU A 35 | 301 |
| Stavebné osi | 296, 305 |
| Súprava nastavovacích klúčov Súradnice | 300-301 |
| Súprava nastavovacích klúčov Súradnice | 295, 305 |
| T | 300 |
| Tacímer | 296, 317 |
| Teodolit | 296, 318 |
| Transportná rukoväť | 295 |
| Trojnožka | 295 |
| Typy dát | 298, 382 |
| U | 297, 372 |
| Určenie osi | 297, 372 |
| V | 297, 367 |
| Vertikálne vyrovnanie | 297, 367 |
| Vertikálne vytýčenie V-vytýčenie | 297, 351 |
| Vertikálny pohon | 295 |</p>
<table>
<thead>
<tr>
<th>Z</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zadávanie bodov</td>
<td></td>
</tr>
<tr>
<td>úprava bodov</td>
<td>378</td>
</tr>
<tr>
<td>výber bodov</td>
<td>296, 312, 377</td>
</tr>
<tr>
<td>vymazanie bodov</td>
<td>378</td>
</tr>
<tr>
<td>Zadávanie bodu</td>
<td></td>
</tr>
<tr>
<td>so súradnicami</td>
<td>377</td>
</tr>
<tr>
<td>Zadávanie bodu stanice</td>
<td>330</td>
</tr>
<tr>
<td>Zadávanie cieľového bodu</td>
<td>330, 336</td>
</tr>
<tr>
<td>Zaostrovacia skrutka</td>
<td>295</td>
</tr>
<tr>
<td>Zapnutie prístroja</td>
<td>296, 317</td>
</tr>
<tr>
<td>Zobrazenie aktívneho projektu</td>
<td>297, 326</td>
</tr>
<tr>
<td>Zobrazenie vodorovného kruhu</td>
<td>296, 319</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Výtyčenie</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>so stavebnými osami</td>
<td>297, 345</td>
</tr>
<tr>
<td>so súradnicami</td>
<td>297, 349</td>
</tr>
</tbody>
</table>

| **Vypínanie prístroja** | 296, 317 |

| **Výber projektu** | 297, 327 |
| **Výber stanice** | 379 |

| **Vnutné umiestnenie** | 297, 337, 339 |
| **Výtyčenie** |
so stavebnými osami	297, 352
so súradnicami	297, 356
Výber meracieho bodu	379
Výtyčenie	
so stavebnými osami	297, 345
so súradnicami	297, 349

| **Zadávanie bodov** |
úprava bodov	378
výber bodov	296, 312, 377
vymazanie bodov	378
Zadávanie bodu	
so súradnicami	377
Zadávanie bodu stanice	330
Zadávanie cieľového bodu	330, 336
Zaostrovacia skrutka	295
Zapnutie prístroja	296, 317
Zobrazenie aktívneho projektu	297, 326
Zobrazenie vodorovného kruhu	296, 319