ORIGINÁLNÍ NÁVOD K OBSLUZE

Tachymetr POS 15/18

Před uvedením do provozu si bezpodmínečně přečtěte návod k obsluze.

Tento návod k obsluze uchovávejte vždy u přístroje.

Jiným osobám předávejte přístroj pouze s návodom k obsluze.

1 Číslo vždy odkazuje na vyobrazení. Vyobrazení k textu najdete na rozkládacích stránkách. Při studiu návodu k obsluze mějte tyto stránky otevřené.

V textu tohoto návodu k obsluze označuje výraz "přístroj" vždy tachymetr POS 15 nebo POS 18.

Části přístroje zezadu 1

1 Prostor pro akumulátor vlevo s uzavíracím šroubem

2 Stavěcí šroub trojnožky
3 Aretace trojnožky
4 Ovládací panel s dotykovou obrazovkou
5 Zaostřovací šrob
6 Okulár
7 Dalekohled s dálkoměrem
8 Průzor pro hrubé zaměření

Části přístroje zepředu 2

10 Svislý pohon
11 Rozhraní USB 2x (malé a velké)
12 Prostor pro akumulátor vpravo s uzavíracím šroubem
13 Vodorovný resp. boční pohon
14 Stavěcí šroub trojnožky
15 Trojnožka
16 Laserová olovnice
17 Naváděcí zařízení
18 Objektiv
19 Transportní rukojet'

Obsah

1 Všeobecné pokyny ... 5
1.1 Signální slova a jejich význam .. 5
1.2 Vysvětlení piktogramů a další upozornění 5
2 Popis .. 6
2.1 Používání v souladu s určeným účelem 6
2.2 Popis přístroje ... 6
2.3 Ke standardnímu vybavení patří: .. 6
3 Příslušenství .. 6
4 Technické údaje .. 8
5 Bezpečnostní pokyny .. 10
5.1 Základní bezpečnostní pokyny ... 10
5.2 Nesprávné použití ... 10
5.3 Správné uspořádání pracoviště .. 10
5.4 Elektromagnetická kompatibilita 11
5.4.1 Klasifikace laseru pro přístroje třídy 2 11
5.4.2 Klasifikace laseru pro přístroje třídy 3R 11
5.5 Všeobecná bezpečnostní opatření ... 11
5.6 Transport .. 11
6 Popis systému ... 12
 6.1 Všeobecné pojetý .. 12
 6.1.1 Součástnice ... 12
 6.1.2 Stavební osy ... 12
 6.1.3 Specifické odborné pojmy ... 13
 6.1.4 Polohy dalekohledu 4 3 ... 14
 6.1.5 Pojmy a jejich popis ... 14
 6.1.6 Zkratky a jejich význam .. 15
 6.2 Systém měření úhlů .. 16
 6.2.1 Princip měření .. 16
 6.2.2 Dvouhosý kompenzátor 5 ... 17
 6.3 Měření vzdáleností ... 17
 6.3.1 Měření vzdálenosti 6 ... 17
 6.3.2 Cíle ... 17
 6.3.3 Reflektorová tyč .. 18
 6.4 Měření výšek ... 19
 6.4.1 Měření výšek ... 19
 6.5 Naváděcí zařízení ... 19
 6.5.1 Naváděcí zařízení 7 ... 19
 6.6 Laserový ukazatel 8 .. 19
 6.7 Datové body ... 19
 6.7.1 Výběr bodů ... 20
 7 První kroky ... 21
 7.1 Akumulátory ... 21
 7.2 Nabíjení akumulátoru ... 21
 7.3 Vložení a výměna akumulátorů 8 ... 21
 7.4 Kontrola funkce .. 22
 7.5 Ovládací panel ... 22
 7.5.1 Funkční tlačítka ... 22
 7.5.2 Velikost dotykové obrazovky .. 22
 7.5.3 Rozdílíení dotykové obrazovky .. 23
 7.5.4 Dotyková obrazovka – číselná klávesnice 23
 7.5.5 Dotyková obrazovka – alfanumerická klávesnice 24
 7.5.6 Dotyková obrazovka - obecné ovládací prvky. 24
 7.5.7 Stavová kontrolka laserového ukazatele 24
 7.5.8 Zobrazení stavu akumulátoru .. 24
 7.6 Zapnutí/vypnutí .. 25
 7.6.1 Zapnutí ... 25
 7.6.2 Vypnutí .. 25
 7.7 Instalace přístroje ... 25
 7.7.1 Instalace pomocí bodu na zemi a laserové olovnice 25
7.7.2 Instalace přístroje ... 25
7.7.3 Instalace nad trubky a pomocí laserové olovnice 26
7.8 Aplikace Teodolit ... 27
7.8.1 Nastavení zobrazení vodorovného kruhu 27
7.8.2 Ruční zadávání odečítání hodnot na kruhu 27
7.8.3 Nastavení odečítání hodnot na kruhu na nulu 28
7.8.4 Indikace svislého sklonu ... 28
8 Systémová nastavení .. 29
8.1 Konfigurace ... 29
8.1.1 Nastavení ... 29
8.2 Čas a datum .. 31
9 Nabídka funkcí (FNC) ... 32
9.1 Naváděcí světlo ... 32
9.2 Laserový ukazatel ... 33
9.3 Podsvícení displeje .. 33
9.4 Elektronická libela .. 33
9.5 Atmosférické korekce ... 33
9.5.1 Korekce atmosférických vlivů 34
10 Funkce k aplikacím .. 34
10.1 Projekty ... 34
10.1.1 Zobrazení aktivního projektu 35
10.1.2 Výběr projektu .. 35
10.1.3 Vytvoření nového projektu ... 35
10.1.4 Projektové informace .. 36
10.2 Stanici a orientace .. 36
10.2.1 Přehled .. 37
10.2.2 Nastavení stanice na bodu pomocí stavebních os 38
10.2.3 Volné stanice v se stavebními osami 41
10.2.4 Nastavení stanice na bodu pomocí souřadnic 43
10.2.5 Volné stanice se souřadnicemi 46
10.3 Nastavení výšky ... 48
10.3.1 Nastavení stanice pomocí stavební osy (s možností Výška "zap") ... 48
10.3.2 Nastavení stanice pomocí souřadnic (s možností Výška "zap") ... 51
11 Aplikace ... 53
11.1 Vodorovné vytýčení (H-vytýčení) 53
11.1.1 Princip H-vytýčení .. 53
11.1.2 Vytýčení pomocí stavebních os 54
11.1.3 Vytýčení pomocí souřadnic .. 58
11.2 Svislé vytýčení (V-vytýčení) .. 61
11.2.1 Princip V-vytýčení ... 61
11.2.2 V-vytýčení pomocí stavebních os 62
11.2.3 V-vytýčení pomocí souřadnic 66
11.3 Proměřování ... 68
11.3.1 Princip proměřování .. 68
11.3.2 Proměňování pomocí stavebních os .. 69
11.3.3 Proměňování pomocí souřadnic .. 71
11.4 Měření rozpětí ... 73
11.4.1 Princip měření rozpětí ... 73
11.5 Měření a zaznamenání ... 75
11.5.1 Princip měření a zaznamenání .. 75
11.5.2 Měření a zaznamenání pomocí stavebních os 76
11.5.3 Měření a zaznamenání pomocí souřadnic ... 77
11.6 Svislé vyrovnaní ... 79
11.6.1 Princip svislého vyrovnání ... 79
11.7 Měření plochy ... 80
11.7.1 Princip měření plochy ... 80
11.8 Nepřímé měření výšek .. 82
11.8.1 Princip nepřímého měření výšky .. 82
11.8.2 Nepřímé určení výšky ... 84
11.9 Určení bodu ve vztahu k ose .. 84
11.9.1 Princip "Bod vůči ose" .. 84
11.9.2 Určení osy .. 86
11.9.3 Kontrola bodů ve vztahu k ose .. 87
12 Data a jejich správa .. 87
12.1 Úvod ... 87
12.2 Bodová data .. 87
12.2.1 Body jako měřicí body .. 88
12.2.2 Body jako souřadnicové body ... 88
12.2.3 Body s grafickými prvky ... 88
12.3 Tvorba bodových dat .. 88
12.3.1 S tachymetrem .. 88
12.3.2 Se softwarem Hilti PROFIS Layout .. 88
12.4 Datová paměť .. 89
12.4.1 Vnitřní paměť tachymetru ... 89
12.4.2 Velkokapacitní paměť USB ... 89
13 Správce dat tachymetru ... 90
13.1 Přehled .. 90
13.2 Výběr projektu ... 90
13.2.1 Pevné body (kontrolní, resp. vytyčovací body) 91
13.2.2 Měřicí body ... 93
13.3 Smazání projektu ... 94
13.4 Nové vytvoření projektu ... 95
13.5 Kopírování projektu .. 95
14 Počítačové sdílení dat .. 96
14.1 Úvod .. 96
14.2 HILTI PROFIS Layout ... 96
14.2.1 Datové typy ... 96
14.2.2 Výstup dat (export) v programu Hilti PROFIS Layout 97
14.2.3 Vstup dat (import) v programu Hilti PROFIS Layout 97
15 Datová připojka s RS 232 ... 98
16 Kalibrace a seřízení ... 98
16.1 Kalibrace v terénu ... 98
16.2 Provedení kalibrace v terénu .. 98
16.3 Kalibrační servis Hilti .. 101
17 Čistění a údržba ... 101
17.1 Čištění a sušení ... 101
17.2 Skladování .. 101
17.3 Přeprava .. 102
18 Likvidace .. 102
19 Záruka výrobce .. 103
20 Upozornění FCC (platné v USA) / upozornění IC (platné v Kanadě) ... 103
21 Prohlášení o shodě s EU .. 104
1. Všeobecné pokyny

1.1 Signální slova a jejich význam

NEBEZPEČÍ
Používá se k upozornění na bezprostřední nebezpečí, které by mohlo vést k těžkému poranění nebo k úmrtí.

VÝSTRAHA
Používá se k upozornění na potenciálně nebezpečnou situaci, která může vést k těžkým poraněním nebo k úmrtí.

POZOR
Používá se k upozornění na potenciálně nebezpečnou situaci, která by mohla vést k lehkým poraněním nebo k věcným škodám.

UPOZORNĚNÍ
Pokyny k používání a ostatní užitečné informace.

1.2 Vysvětlení pictogramů a další upozornění

Symboly

Symbol třídy laseru II / class 2

Symbol třídy laseru III / třída 3

Výstupní otvor laserového paprsku

Umístění identifikačních údajů na přístroji
Typové označení a sériové označení je umístěné na typovém štítku vašeho výrobku. Zapište
2. Popis

2.1 Používání v souladu s určeným účelem

Přístroj je určen pro měření vzdáleností a směrů, vypočet trojrozměrných záměrných poloh a odvozených hodnot i vytyčení daných souřadnic nebo osově vztažených hodnot.

Použivejte pouze originální příslušenství a nástroje firmy Hilti, abyste předešli nebezpečí poranění.

Dodržujte údaje o provozu, péči a údržbě, které jsou uvedeny v návodu k obsluze.

Zohledněte vlivy okolí. Nepouživejte přístroj tam, kde hrozí nebezpečí požáru nebo exploze.

Úpravy nebo změny na přístroji nejsou dovoleny.

2.2 Popis přístroje

Tachymetr Hilti POS 15/18 umožňuje určování objektů jako poloh v prostoru. Přístroj má vodorovný a vodorovný kruh s digitálním dělením, dvě elektronické libely (kompenzátor), koaxiální dálkoměr zabudovaný v dalekohledu a procesor pro výpočty a ukládání dat.

Pro přenosy dat mezi tachymetrem a PC v obou směrech, zpracování dat a předávání dat jiným systémům je k dispozici počítačový software Hilti PROFIS Layout.

2.3 Ke standardnímu vybavení patří:

1. Tachymetr
2. Akumulátory typu Li-ion 3,8 V 5 200 mAh
3. Rektifikační klíč POW 10
4. Výtlačný štítek na laser
5. Návod k obsluze
6. Kufr Hilti
7. Volitelné: Hilti PROFIS Layout (CD ROM se softwarem)
8. Volitelné: Ochrana proti kopírování softwaru
9. Volitelné: Datový kabel USB

3. Příslušenství

<table>
<thead>
<tr>
<th>Obrázek</th>
<th>Označení</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Akumulátor POA 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Síťový adaptér POA 81</td>
<td></td>
</tr>
<tr>
<td>Obrázek</td>
<td>Označení</td>
<td>Popis</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Nabíječka POA 82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflektorová tyč (metrické jednotky) POA 50</td>
<td>Reflektorová tyč POA 50 (metrické jednotky) (skládá se ze 4 tyčových prvků (každý o délce 300 mm), hrotu tyče (délka 50 mm) a reflektorové desky (výška 100 mm, resp. vzdálenost od středu 50 mm)) slouží k měření bodů na zemi.</td>
</tr>
<tr>
<td></td>
<td>Reflektorová tyč (imperiální jednotky) POA 51</td>
<td>Reflektorová tyč POA 51 (imperiální jednotky) (skládá se ze 4 tyčových prvků (každý o délce 12 palců), hrotu tyče (délka 2,03 palců) a reflektorové desky (výška 3,93 palců, resp. vzdálenost od středu 1,97 palců)) slouží k měření bodů na zemi.</td>
</tr>
<tr>
<td></td>
<td>Reflektorová fólie POAW-4</td>
<td>Samolepicí fólie pro umístění referenčních bodů na vyvýšené cíle, jako jsou stěny nebo sloupy.</td>
</tr>
<tr>
<td></td>
<td>Stativ PUA 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rektifikační klíč POW 10</td>
<td>Pouze pro použití odborným personálem!</td>
</tr>
</tbody>
</table>
4. Technické údaje

Technické změny vyhrazeny!

UPOZORNĚNÍ
Kromě přesnosti měření úhlů se oba přístroje neodlišují.

Dalekohled

<table>
<thead>
<tr>
<th>Zvětšení dalekohledu</th>
<th>30x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nejkratší záměrná vzdálenost</td>
<td>1,5 m (4,9 ft)</td>
</tr>
<tr>
<td>Zorné pole dalekohledu</td>
<td>1° 20'; 2,3 m / 100 m (7,0 ft / 300 ft)</td>
</tr>
<tr>
<td>Otvor objektivu</td>
<td>45 mm (1,8")</td>
</tr>
</tbody>
</table>

Kompenzátor

Typ	2 osy, kapalina
Pracovní rozsah	±3'
Přesnost	2"

Měření úhlů

Přesnost POS 15 (DIN 18723)	5"
Přesnost POS 18 (DIN 18723)	3"
Systém snímaní úhlů	diametrální

Měření vzdálenosti

Dosah	340 m (1 000 ft) Kodak šedá 90 %
Přesnost	±3 mm + 2 ppm (0,01 ft + 2 ppm)
Výkon	2,4 mW
Vlnová délka	658 nm
Třída laseru	Třída 3R
Naváděcí zařízení

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost</th>
<th>Hmotnost (nabíječka POA 82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozbíhavost</td>
<td>1,4°</td>
<td>100...240 V</td>
</tr>
<tr>
<td>Typický dosah</td>
<td>70 m (230 ft)</td>
<td>47...63 Hz</td>
</tr>
</tbody>
</table>

Laserová olovnice

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost</th>
<th>Hmotnost (nabíječka POA 82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přesnost</td>
<td>1,5 mm na 1,5 m (1/16 na 3 ft)</td>
<td>4 A</td>
</tr>
<tr>
<td>Výkon</td>
<td>< 1 mW</td>
<td>5 V</td>
</tr>
<tr>
<td>Vlnová délka</td>
<td>635 nm</td>
<td>0,25 kg (0,6 lbs)</td>
</tr>
<tr>
<td>Třída laseru</td>
<td>Class 2</td>
<td>Hmotnost (nabíječka POA 82)</td>
</tr>
</tbody>
</table>

Datová paměť

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost</th>
<th>Hmotnost (nabíječka POA 82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velikost paměti (datové bloky)</td>
<td>10 000</td>
<td>0,06 kg (0,1 lbs)</td>
</tr>
<tr>
<td>Datové připojení</td>
<td>Hostitel a klient, 1x sériové RS-232C, 2x USB</td>
<td></td>
</tr>
</tbody>
</table>

Indikátor

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost</th>
<th>Hmotnost (nabíječka POA 82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barevný displej (dotyková obrazovka)</td>
<td>320 x 240 pixelů</td>
<td></td>
</tr>
<tr>
<td>5stupňové</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Přepínání den / noc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Třída ochrany IP

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost</th>
<th>Hmotnost (nabíječka POA 82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída</td>
<td>IP 56</td>
<td></td>
</tr>
</tbody>
</table>

Boční pohony

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost</th>
<th>Hmotnost (nabíječka POA 82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>nekonečný</td>
<td></td>
</tr>
</tbody>
</table>

Závit stativu

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost</th>
<th>Hmotnost (nabíječka POA 82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Závit trojnožky</td>
<td>5/8"</td>
<td></td>
</tr>
</tbody>
</table>

Akumulátor POA 80

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost</th>
<th>Hmotnost (nabíječka POA 82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>Li-Ion</td>
<td></td>
</tr>
<tr>
<td>Jmenovité napětí</td>
<td>3,8 V</td>
<td></td>
</tr>
<tr>
<td>Kapacita akumulátoru</td>
<td>5 200 mAh</td>
<td></td>
</tr>
<tr>
<td>Doba nabíjení</td>
<td>4 h</td>
<td></td>
</tr>
<tr>
<td>Doba provozu (při měřených vzdáleností/úhle každých 30 sekund)</td>
<td>16 h</td>
<td></td>
</tr>
<tr>
<td>Hmotnost</td>
<td>0,1 kg (0,2 lbs)</td>
<td></td>
</tr>
<tr>
<td>Rozměry</td>
<td>67 mm x 39 mm x 25 mm (2,6" x 1,5" x 1,0")</td>
<td></td>
</tr>
</tbody>
</table>

Síťový adaptér POA 81 a nabíječka POA 82

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost</th>
<th>Hmotnost (nabíječka POA 82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napájení</td>
<td>100...240 V</td>
<td></td>
</tr>
<tr>
<td>Síťová frekvence</td>
<td>47...63 Hz</td>
<td></td>
</tr>
<tr>
<td>Jmenovitý proud</td>
<td>4 A</td>
<td></td>
</tr>
<tr>
<td>Jmenovité napětí</td>
<td>5 V</td>
<td></td>
</tr>
<tr>
<td>Hmotnost (síťový adaptér POA 81)</td>
<td>0,25 kg (0,6 lbs)</td>
<td></td>
</tr>
<tr>
<td>Hmotnost (nabíječka POA 82)</td>
<td>0,06 kg (0,1 lbs)</td>
<td></td>
</tr>
<tr>
<td>Rozměry (sítový adaptér POA 81)</td>
<td>108 mm x 65 mm x 40 mm (4,3" x 2,6" x 0,1")</td>
<td></td>
</tr>
<tr>
<td>Rozměry (nabíječka POA 82)</td>
<td>100 mm x 57 mm x 37 mm (4,0" x 2,2" x 1,5")</td>
<td></td>
</tr>
</tbody>
</table>

Teplota
- Provozní teplota: -20...+50 °C (-4 °F až +122 °F)
- Skladovací teplota: -30...+70 °C (-22 °F až +158 °F)

Rozměry a hmotnost
- Rozměry: 149 mm x 145 mm x 306 mm (5,9" x 5,7" x 12")
- Hmotnost: 4,0 kg (8,8 lbs)

5. Bezpečnostní pokyny

5.1 Základní bezpečnostní pokyny

Vedle technických bezpečnostních pokynů uvedených v jednotlivých kapitolách tohoto návodu k obsluze je nutno vždy striktně dodržovat následující ustanovení.

5.2 Nesprávné použití

Přístroj a jeho pomocné prostředky mohou být nebezpečné, když s nimi neodborně zachází nevyškolený personál, nebo když se nepoužívají v souladu s určeným účelem.

- **a)** Přístroj nikdy nepoužívejte bez dodržování příslušných instrukcí nebo bez přechtění tohoto návodu.
- **b)** Nevyřazujte z činnosti žádná bezpečnostní zařízení a neodstraňujte informační a výstražné štítky.
- **c)** Přístroj dávejte opravovat pouze do servisních středisek Hilti. Při neodborném otvření přístroje může vzniknout laserové záření, které přesahuje třídu 3R.
- **d)** Úpravy nebo změny na přístroji nejsou dovoleny.
- **e)** Používejte pouze originální příslušenství a přidavná zařízení firmy Hilti, abyste předešli nebezpečí poranění.
- **f)** Přístroj nepoužívejte ve výbušném prostředí.

- **g)** K čištění používejte pouze čisté a měkké hadry. Pokud je to nutné, můžete je mírně natřít čistým alkoholem.
- **h)** Laserové přístroje nenechávejte v dosahu dětí.
- **i)** Měření prováděná na pěnových plastových materiálech, např. styropor a styrodór, na sněhu nebo silně reflexních plochách apod. mohou vést k chyběnému hodnotám.
- **j)** Měření na podkladech s nízkou odrazivostí a vysoko odrazivým okolím mohou vést k chyběnému hodnotám.
- **k)** Měření přes sklo nebo jiné předměty může zkrátit výsledky.
- **l)** Rychlá změna podmínek měření, jako např. přerušení paprsku procházející osobou, může zněhodnotit výsledky měření.
- **m)** Nemířte přístrojem proti slunci, ani jiným silným světelným zdrojům.
- **n)** Přístroj nepoužívejte jako nivelační přístroj.
- **o)** Před důležitým měřením, po pádu nebo po působení jiných mechanických vlivů přístroj přezkoužte.

5.3 Správné uspořádání pracoviště

- **a)** Zajistěte měřicí stanoviště a při instalaci přístroje dbejte na to, aby nebyl paprsek namířen proti jiným osobám nebo proti vám samotnému.
- **b)** Přístroj používejte pouze v definovaných mezích použití, tj. neměřte na skle, chromové oceli, leštěných kamenech atd.
c) Dodržujte specifické předpisy pro prevenci úrazů platné v dané zemi.

5.4 Elektromagnetická kompatibilita
Ačkoli přístroj splňuje přísné požadavky příslušných směrnic, nemůže firma Hilti vyloučit možnost, že přístroj
- bude rušit jiné přístroje (např. navigační zařízení letadel) nebo
- bude rušený silným zářením, což může vést k chybným operacím.

V těchto případech, nebo máte-li nějaké pochybnosti, proveďte kontrolní měření.

5.4.1 Klasifikace laseru pro přístroje třídy 2

5.4.2 Klasifikace laseru pro přístroje třídy 3R

a) Přístroje třídy laseru 3R a Iiia by měly používat pouze vyškolené osoby.

b) Oblasti použití by měly být vyznačeny na varovných štítcích laseru.

c) Laserové paprsky by měly probíhat daleko pod nebo nad úrovní očí.

d) Pomocí bezpečnostních opatření je nutné zajistit, aby laserový paprsek neúmyslně nedopadl na plochu, která odráží jako zrcadlo.

e) Pomocí ochranných opatření je nutné zajistit, aby se osoby nedívaly přímo do paprsku.

f) Laserové záření by nemělo přesáhnout do nestřežených míst.

g) Nepoužívané laserové přístroje by se měly skladovat tam, kam nemají přístup nepovolané osoby.

5.5 Všeobecná bezpečnostní opatření
a) Před použitím přístroj zkонтrolujte, zda není poškozený. Pokud je poškozený, svěřte jeho opravu servisnímu středisku Hilti.

b) Dodržujte provozní a skladovací teplotu.

c) Po pádu nebo působení jiného mechanického vlivu zkонтrolujte přesnost přístroje.

d) Když přenášíte přístroj z chladičního prostředí do teplejšího nebo naopak, nechte ho před použitím aklimatizovat.

e) Při použití se stativy zajistěte, aby byl přístroj pevně našroubovaný a aby stativ stál spolehlivě a pevně na zemi.

f) Udržujte výstupní okénko laseru čisté, abyste zabránili chybnému měření.

Ačkoliv je přístroj konstruován pro používání v nepříznivých podmínkách na stavební, měli byste s ním zacházet opatrně, podobně jako s jinými optickými a elektrickými přístroji (dalekohledy, brýle, fotoaparáty).

h) Přestože je přístroj chráněn proti vlhkosti, před uložením do transportního pouzdra jej do sucha ošetřete.

i) Z bezpečnostních důvodů překontrolujte dříve nastavené hodnoty, resp. dřívější nastavení přístroje.

j) Při vyrovnávání přístroje pomocí krabicové libely se na přístroj dívejte šikmo.

k) Kryt prostoru pro akumulátor pečlivě zajistěte, aby akumulátor nemohl vypadnout nebo aby nemohl vzniknout kontakt, v důsledku kterého by se přístroj neúmyslně vypnul a důsledkem toho by došlo ke ztrátě údajů.

5.6 Transport
Při zasílání přístroje akumulátor izolujte nebo vyjměte z přístroje. Kapalina vyteká z baterií/akumulátorů může přístroj poškodit. Aby nedocházelo k poškozování životního prostředí, musíte se při likvidaci přístroje a akumulátorů/baterií řídit platnými místními předpisy. V případě pochybností kontaktujte výrobce.
6. Popis systému

6.1 Všeobecné pojmy

6.1.1 Souřadnice

Na některých stavbách zeměměřičské firmy místo stavebních os nebo v kombinaci s nimi vyznačují další body a jejich polohu popisují souřadnicemi.
Základem souřadnic je obecně pozemní souřadnicový systém, který většinou používají zeměpisné mapy.

6.1.2 Stavební osy

Před zahájením stavby obvykle vyznačí geodetická společnost nejprve v místě stavby a v jejím okolí výškové značky a stavební osy.
U každé stavební osy se na zemi vyznačí dva konce.
Podle těchto značek se umisťují jednotlivé stavební prvky. U větších budov existuje množství stavebních os.
6.1.3 Specifické odborné pojmy

Osy přístroje

- a Záměrná osa
- b Svislá osa
- c Klopná osa

Vodorovný kruh/vodorovný úhel

Znaměřených hodnot odečtených na vodorovném kruhu 70° k jednomu cíli a 30° k druhému cíli lze vypočítat svíraný úhel 70° - 40° = 30°.
Svislý kruh/svislý úhel

Tím, že je svislý kruh vyrovnán na 0° ke směru gravitace nebo 0° k vodorovnému směru, jsou zde úhly v podstatě určeny směrem gravitace.
Na základě těchto hodnot jsou z naměřené šikmé vzdálenosti vypočítány vodorovná vzdálenost a výškové rozdíly.

6.1.4 Polohy dalekohledu

Aby bylo možné odečtené hodnoty na vodorovném kruhu správně přiřadit ke svislému úhlu, hovoříme o polohách dalekohledu. Tzn. že podle směru dalekohledu vůči ovládacímu panelu lze určit, ve které "poloze" se měřilo.

6.1.5 Pojmy a jejich popis

<table>
<thead>
<tr>
<th>Zámková osa</th>
<th>Linie procházející nitkovým křížem a středem objektivu (osa dalekohledu).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klopová osa</td>
<td>Osa otáčení dalekohledu.</td>
</tr>
<tr>
<td>Svislá osa</td>
<td>Osa otáčení celého přístroje.</td>
</tr>
<tr>
<td>Zenit</td>
<td>Zenit je směr zemské přitažlivosti nahoru.</td>
</tr>
<tr>
<td>Horizont</td>
<td>Horizont je směr kolmý k zemské přitažlivosti – všeobecně se označuje jako horizontální (vodorovný).</td>
</tr>
<tr>
<td>Nadír</td>
<td>Nadír je směr zemské přitažlivosti dolů.</td>
</tr>
<tr>
<td>Svislý kruh</td>
<td>Jako svislý kruh se vyznačuje kruh pro odečítání úhlů, jehož hodnoty se mění, když se dalekohled pohybuje nahoru nebo dolů.</td>
</tr>
<tr>
<td>Svislý směr</td>
<td>Jako svislý směr se označuje odečtená hodnota na svislém kruhu.</td>
</tr>
<tr>
<td>Svislý úhel (Vů)</td>
<td>Svislý úhel je hodnota odečtená na svislém kruhu. Svislý kruh se většinou vyrovnává ve směru zemské přitažlivosti pomocí kompenzátoru, odečtením "nulové hodnoty" v zenitu.</td>
</tr>
</tbody>
</table>
Výškové úhly

U výškových úhlů je "hula" určena horizontem, kladné jsou směrem nahoru a záporné dolů.

Vodorovný kruh

Jako vodorovný kruh se označuje kruh pro odečítání úhlů, jehož hodnoty se mění, když se přístroj otáčí.

Vodorovný směr

Jako vodorovný směr se označuje odečtená hodnota na vodorovném kruhu.

Vodorovný úhel (Hú)

Vodorovný úhel je dán rozdílem dvou odečtených hodnot na vodorovném kruhu, ale často se jako úhel označuje hodnota odečtená na kruhu.

Šikmá vzdálenost (Sv)

Vzdálenosti od středu dalekohledu k dopadajícímu laserovému paprsku na záměrné ploše.

Vodorovná vzdálenost (Hv)

Naměřená šikmá vzdálenost redukovaná na horizontální.

Alhidáda

Alhidáda je otočná prostřední část tachymetru. Součástí této části bývají normálně ovládací panel, libely pro vyrovnání do horizontální polohy a uvnitř vodorovný kruh.

Trojnožka

Přístroj stojí na trojnožce, kterou lze upevnit např. na stativ. Trojnožka má tři dosedací body, které lze svíce nastavovat pomocí stavěcích šroubů.

Stanice přístroje

Místo, na kterém je přístroj nainstalovaný - většinou nad vy- značeným bodem na zemi.

Výška stanice (Stan Výš)

Výška bodu na zemi příslušné stanice s přístrojem nad referenční výškou.

Výška přístroje (vp)

Výška od bodu na zemi ke středu dalekohledu.

Výška reflektoru (vr)

Vzdálenost středu reflektoru od špice reflektorové tyče.

Orientační bod

Záměrný bod ve spojení se stanicí přístroje pro určení vodo- rovného referenčního směru pro měření vodorovného úhlu.

EDM

Elektronický dálkoměr

Východní souřadnice Vých(y)

V typickém souřadnicovém systému zaměřování se tato hodnota vztahuje k východozápadnímu směru.

Severní souřadnice Sever(x)

V typickém souřadnicovém systému zaměřování se tato hodnota vztahuje k severojižnímu směru.

Délka (Ln)

Toto je označení pro rozměr délky podél stavební osy nebo jiné referenční linie.

Příčka (Offs)

Toto je označení pro pravouhle vzdálenost od stavební osy nebo jiné referenční linie.

Výška (Výš)

Jako výška se označuje mnoho hodnot. Výška je svislá vzdálenost od referenčního bodu nebo referenční roviny.

6.1.6 Zkratky a jejich význam

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hú</td>
<td>Vodorovný úhel</td>
</tr>
<tr>
<td>Vú</td>
<td>Svislý úhel</td>
</tr>
<tr>
<td>dHú</td>
<td>Delta – vodorovný úhel</td>
</tr>
<tr>
<td>dVú</td>
<td>Delta – svislý úhel</td>
</tr>
<tr>
<td>Sv</td>
<td>Šikmá vzdálenost</td>
</tr>
<tr>
<td>Hv</td>
<td>Vodorovná vzdálenost</td>
</tr>
<tr>
<td>dHv</td>
<td>Delta – vodorovná vzdálenost</td>
</tr>
</tbody>
</table>
6.2 Systém měření úhlů

6.2.1 Princip měření

Přístroj vypočítá úhly vždy ze dvou hodnot, které se odečítají na kruhu.
Při měření vzdálenosti se pomocí viditelného laserového paprsku vysílají měřicí vlny, které se odrážejí od objektu.
Z těchto fyzikálních prvků se určují vzdálenosti.

Pomocí elektronických libel (kompenzátorů) se určují sklony přístroje a upravují odečty hodnot, které se vypočítávají z naměřené šikmé vzdálenosti, vodorovné vzdálenosti a výškového rozdílu.

Pomocí integrovaného procesoru lze převádět všechny délkové jednotky, jako např. metrické metry a imperiální systém stop, yardů, palců atd., a díky digitálnímu dělení kruhu zobrazovat různé
úhlové jednotky, jako např. šedesátinné dělení 360° (° °") nebo gon (g), kde je plný kruh rozdělen na 400 dílů.

6.2.2 Dvooušový kompenzátor

Kompensátor je v zásadě niveláční systém, např. elektronické libely, pro určení zbytkového sklonu os tachymetru.

Pomocí dvooušového kompenzátoru se s vysokou přesností určují zbytkové sklony v podělném a příčném směru.

Korekce vypočtu zajišťuje, že zbytkové sklony nemají vliv na měření úhlů.

6.3 Měření vzdáleností

6.3.1 Měření vzdálenosti

Měření vzdáleností se provádí pomocí viditelného laserového paprsku, který vychází ze středu objektivu, tj. dálkoměr je koaxiální.

Laserový paprsek měří "normální" povrchy bez pomocí zvláštního reflektoru.

Normální povrchy jsou všechny neodrážející povrchy, jejichž struktura může být zcela hrubá.

Dosah závisí na odrazivosti záměrného povrchu, tj. pouze málo odrazivé povrchy, jako např. modré, červené, zelené barevné povrchy, mohou poněkud omezovat dosah.

S přístrojem se dodává reflektorová tyč s nalepenou reflektorovou fólií.

Měření na reflektorové fólii nabízí bezpečné měření vzdáleností i u vysokých dosahů.

Navíc umožňuje reflektorová tyč měření vzdáleností u bodů na zemi.

UPOZORNĚNÍ

Pravidelně kontrolujte seřízení viditelného laserového paprsku k záměrné ose. Je-li potřeba provést seřízení nebo nejste-li si jisti, zašlete přístroj do nejbližšího servisního střediska Hilti.

6.3.2 Cíle
S měřicím paprskem se můžete zaměřit na jakýkoli pevný cíl.

Při měření vzdálenosti je třeba dbát na to, aby se měřicím paprskem nepohyboval žádný jiný předmět.

UPOZORNĚNÍ
Jinak se může stát, že není určena vzdálenost k požadovanému cíli, ale k jinému předmětu.

6.3.3 Reflektorová tyč
Reflektorová tyč POA 50 (metrické jednotky) (skládá se ze 4 tyčových prvků (každý o délce 300 mm), hrotu tyče (délka 50 mm) a reflektorové desky (výška 100 mm, resp. vzdálenost od středu 50 mm)) slouží k měření bodů na zemi.
Reflektorová tyč POA 51 (imperiální jednotky) (skládá se ze 4 tyčových prvků (každý o délce 12 palců), hrotu tyče (délka 2,03 palců) a reflektorové desky (výška 3,93 palců, resp. vzdálenost od středu 1,97 palců)) slouží k měření bodů na zemi.
Pomocí integrované libely lze postavit reflektorovou tyč kolmo nad bodem na zemi.
Vzdálenost špice tyče od středu reflektoru je proměnlivá, aby byl přes různě vysoké překážky zajištěn volný výhled pro laserový měřicí paprsek.
Notisk na reflektorové fólii zajišťuje bezpečné měření směru a vzdáleností a ve srovnání s jinými závěrnými povrchy navíc reflektorová fólie zvyšuje dosah.

<table>
<thead>
<tr>
<th>Délky reflektorových tyčí</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
</tr>
</thead>
<tbody>
<tr>
<td>POA 50 (metrické jednotky)</td>
<td>100 mm</td>
<td>400 mm</td>
<td>700 mm</td>
<td>1 000 mm</td>
<td>1 300 mm</td>
</tr>
<tr>
<td>POA 51 (imperiální jednotky)</td>
<td>4"</td>
<td>16"</td>
<td>28"</td>
<td>40"</td>
<td>52"</td>
</tr>
</tbody>
</table>

![Reflektorová tyče](image-url)
6.4 Měření výšek

6.4.1 Měření výšek

Přístroj umožňuje měření výšek, resp. výškových rozdílů.
Měření výšek využívá metody "trigonometrického určení výšky" a příslušného výpočtu.

![Diagram](image)

Výšky se vypočítávají pomocí **svízlého úhlu** a **šikmé vzdálenosti** ve spojení s **výškou přístroje** a **výškou reflektoru**.

\[
dVýš = \cos(Vú) \cdot Sv + vp - vr + (kor)\]

Pro výpočet absolutní výšky cílového bodu (bodu na zemi) se výška stanice (Stan Váš) přičte k hodnotě delta výšky.

\[
Výš = \text{Stan Výš} + dVýš
\]

6.5 Naváděcí zařízení

6.5.1 Naváděcí zařízení

Naváděcí zařízení lze zapnout nebo vypnout ručně a frekvenci blikání lze měnit ve 4 stupních.
Naváděcí zařízení tvoří dvě červené LED v tělese dalekohledu.
V zapnutém stavu bliká jedna ze dvou LED, aby bylo jasně zřejmé, zda se osoba nachází vlevo nebo vpravo od zámečné linie.
Osoba, která stojí alespoň 10 m od přístroje a poblíž zámečné linie, vidí blikající nebo trvalé světlo svítit silněji podle toho, zda se nachází vlevo nebo vpravo od zámečné linie.
Osoba se nachází na zámečné linii, když vidí obě LED svítit se stejnou intenzitou.

6.6 Laserový ukazatel

Přístroj umožňuje trvalé zapnutí laserového měřicího paprsku.
Trvale zapnutý laserový měřicí paprsek je nadále označován jako "laserový ukazatel".
Při práci ve vnitřním prostroru lze laserový ukazatel používat pro zaměření resp. naznačení směru měření.
Ve vnějším prostroru je však měřicí paprsek viditelný pouze omezeně a tato funkce není příliš praktická.

6.7 Datové body

Tachometry Hilti měří data, jejichž výsledky vytvářejí měřicí bod.
Podobně se datové body s příslušným popisem polohy používají v aplikacích, např. při vytyčení nebo určení stanice.
Pro usnadnění resp. urychlení volby bodů má tachymetr Hilti k dispozici různé možnosti výběru bodů.

6.7.1 Výběr bodů

Výběr bodů je důležitou součástí systému tachymetru, protože obecně se měří body, které se opakovaně používají pro vytyčení, pro stanice, pro orientaci a srovnávací měření. Body lze vybírat různými způsoby:

1. Z plánu
2. Ze seznamu
3. Ruční zadávání

Body z plánu

Kontrolní body (pevné body) jsou pro výběr bodů k dispozici v grafické podobě.

Body se v grafickém zobrazení volí klepnutím prstem, resp. poklepáním hrotem.

UPOZORNĚNÍ

Bodová data, kterým je přiřazen grafický prvek, nelze v tachymetru ani upravovat, ani smazat. Tuto činnost lze provádět pouze v softwaru Hilti PROFIS Layout.
7. První kroky

7.1 Akumulátor

Přístroj má dva akumulátory, které se vybíjejí postupně. Aktuálně nabíjet obou akumulátorů je neustále zobrazeno. Při výměně akumulátorů lze jeden akumulátor používat k provozu, zatímco se druhý akumulátor nabijí.

Při výměně akumulátorů během provozu a pro zamezení vypnutí přístroje je vhodné měnit akumulátory postupně.

7.2 Nabíjení akumulátoru

Po vybalení přístroje vyjměte z pouzdra nejprve síťový adaptér, nabíječku a akumulátor.

Nechte akumulátor nabíjet cca 4 hodiny.

7.3 Vložení a výměna akumulátorů

Nabitý akumulátor vložte do přístroje konektorem směrem do přístroje a dolů. Pečlivě zajistěte kryt prostoru pro akumulátor.
7.4 Kontrola funkce

UPOZORNĚNÍ
Mějte na paměti, že má tento přístroj pro otáčení kolem alhidády prokluzovací spojky a nemusí být aretován na bočních pohonech.

Boční pohony pro horizontální a vertikální pracují jako nekonečné pohony srovnatelné s optickým nivelačním přístrojem.
Nejprve na začátku a poté v pravidelných intervalech zkontrolujte funkci přístroje podle následujících kritérií:

1. Zkontrolujte prokluzovací spojky otáčením přístroje rukou opatrně doleva a doprava a pohybováním dalekohledu nahoru a dolů.
2. Otáčejte boční pohony pro horizontální a vertikální opatrně oběma směry.
3. Otočte zaostřovací kolečko úplně doleva. Podívejte se do dalekohledu a pomocí kolečka okuláru zaostřete nitkový kříž.
4. Zkontrolujte směr obou průzorů na dalekohledu, zda se shoduje se směrem nitkového kříže.
5. Před dalším používáním přístroje se přesvědčete, že je kryt rozhraň USB řádně uzavřený.

7.5 Ovládací panel

Ovládací panel obsahuje celkem 5 tlačítek potištěných symboly a dotykovou obrazovku pro interaktivní ovládání.

7.5.1 Funkční tlačítka

Funkční tlačítka slouží k celkovému ovládání.

<table>
<thead>
<tr>
<th></th>
<th>Zapnutí resp. vypnutí přístroje.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn</td>
<td>Zapnutí resp. vypnutí podsvícení displeje.</td>
</tr>
<tr>
<td>FNC</td>
<td>Vyvolání nabídky FNC pro pomocná nastavení.</td>
</tr>
<tr>
<td>Home</td>
<td>Přerušení resp. ukončení všech aktivních funkcí a návrat k úvodní nabídce.</td>
</tr>
<tr>
<td>?</td>
<td>Vyvolání nápovědy k aktuálnímu zobrazení.</td>
</tr>
</tbody>
</table>

7.5.2 Velikost dotykové obrazovky

Velikost dotykové obrazovky je cca 74 x 56 mm (2,9 x 2,2 in) s celkovým počtem 320 x 240 pixelů.
7.5.3 Rozdělení dotykové obrazovky
Dotyková obrazovka je pro ovládání rozdělena na oblasti pro informování uživatele.

1 Řádek pokynů uvádí, co je třeba udělat
2 Stavový řádek pro akumulátor a laserový ukazatel
3 Zobrazení a zadávání času a data
4 Hierarchie úrovní nabídek
5 Označení datových polí v 6
6 Datová pole
7 Pomocná měřicí schémata
8 Cíle až s 5 "programovatelnými klávesami"

7.5.4 Dotyková obrazovka – číselná klávesnice

<table>
<thead>
<tr>
<th>Zadávání Projekt</th>
<th>08/06/11 10:16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 + - 4 5 6</td>
<td>← → ← → ← →</td>
</tr>
<tr>
<td>7 8 9 0 .</td>
<td>Zruš ABC abc 123 OK</td>
</tr>
</tbody>
</table>

Přerušení a návrat k předchozímu zobrazení.

Potvrzení a převzetí zadávání.

Posunutí místa zadávání vlevo.

Posunutí místa zadávání vpravo.

7.5.5 Dotyková obrazovka – alfanumerická klávesnice

<table>
<thead>
<tr>
<th>Zadávání Projekt</th>
<th>08/06/11 10:16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zruš</td>
</tr>
<tr>
<td>A B C D E F G H</td>
<td></td>
</tr>
<tr>
<td>I J K L M N O P</td>
<td></td>
</tr>
<tr>
<td>Q R S T U V W X</td>
<td></td>
</tr>
<tr>
<td>Y Z</td>
<td></td>
</tr>
</tbody>
</table>

- Zruš
- Přerušení a návrh k předchozímu zobrazení.
- abc
- Přepnutí na malá písmena.
- 123
- Přepnutí na číselnou klávesnici.
- OK
- Potvrzení a převzetí zadávání.
- Posunutí místa zadávání vlevo.
- Posunutí místa zadávání vpravo.

7.5.6 Dotyková obrazovka - obecné ovládací prvky

- Aplikace / Program – Tlačítko pro spuštění programu nebo funkce.
- Správce dat
- Tlačítko pro přímé zadávání číselných dat, včetně znaměnek a desetinných míst.
- RAF _78... PB _
- Tlačítko pro přímé zadávání alfanumerických znaků, vč. velkých a malých písmen.
- MOG 14 3 T3
- Výběr ze seznamu. Seznamy mohou obsahovat numerické nebo alfanumerické hodnoty a nastavení.
- Tak zvaná "rozevírací nabídka". Zde se ve většině případů otevírají maximálně tři možnosti pro výběr nastavení.
- Příklad operačního tlačítka v dolním řádku zobrazení.

7.5.7 Stavová kontrolka laserového ukazatele

Přístroj je vybaven laserovým ukazatelem.

- Laserový ukazatel ZAP
- Laserový ukazatel VYP

7.5.8 Zobrazení stavu akumulátoru

Přístroj používá 2 lithium-iontové akumulátory, které se podle potřeby vybíjejí současně nebo postupně.
Přepnutí z jednoho akumulátoru na druhý probíhá automaticky.
Proto je vždy možné vyjmout jeden akumulátor, např. pro dobití, a zároveň dále pracovat s druhým akumulátorem, dokud to jeho kapacita umožňuje.
UPOZORNĚNÍ
Čím plnější je symbol baterie, tím je akumulátor nabitější.

7.6 Zapnutí/vypnutí

7.6.1 Zapnutí
Tlačítko zapnutí resp. vypnutí podržte stisknuté cca 2 sekundy.

UPOZORNĚNÍ
Byl-li přístroj dříve zcela vypnut, trvá postup úplného spuštění cca 20–30 sekund a během něj se postupně vystřídají dvě různá zobrazení.

Postup spuštění je ukončen, je-li třeba vyrovnat přístroj do horizontální polohy (viz kapitolu 7.7.2).

7.6.2 Vypnutí

<table>
<thead>
<tr>
<th>Vypnout přístroj</th>
<th>Klik</th>
<th>Vypnutí</th>
<th>Klidový stav</th>
<th>Zruš</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplikace/Volba aplikace</td>
<td>08/06/11</td>
<td>10:07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Přerušení a návrat k předchozímu zobrazení.

- Tachymetr přechází do klidového stavu. Po novém stisknutí tlačítka pro zapnutí resp. vypnutí se systém opět spustí a přejde na stejné místo, ze kterého byl přístroj převeden do klidového stavu.
- Tachymetr se úplně vypne.
- Tachymetr se znovu spustí. Eventuální neuložená data se přitom ztratí.

Stiskněte tlačítko zapnutí resp. vypnutí.

UPOZORNĚNÍ
Mějte na paměti, že při vypnutí a novém spuštění je pro jistotu zopakována otázka a od uživatele je požadováno dodatečné potvrzení.

7.7 Instalace přístroje

7.7.1 Instalace pomocí bodu na zemi a laserové olovnice
Přístroj by měl být vždy postaven nad bodem, který je vyznačen na zemi, aby mohla být v případě odchylek měření použita staniční data a staniční resp. orientační body.

Přístroj je vybaven laserovou olovnicí, která se po zapnutí přístroje rovněž zapne.

7.7.2 Instalace přístroje

1. Statív postavte středem hlavy stativu přibližně nad příslušný bod na zemi.
2. Našroubujte přístroj na statív a zapněte ho.
3. Ručně pohybujte dvěma nohami stativu tak, aby se laserový paprsek nacházel na značce na zemi.

UPOZORNĚNÍ Dbejte na to, aby hlava stativu byla přibližně vodorovně.
4. Poté zatlačte nohy stativu do země.
5. Zbývající odchylku laserového bodu od značky na zemi vyrovnejte pomocí stavěcích šroubů – laserový bod se nyní musí nacházet přesně na značce na zemi.
6. Prodloužením nohou stativu vyrovnejte bublinu v krabicové libele na trojnožce doprostřed. **UPOZORNĚNÍ** Provedete to prodloužením nebo zkrácením protilehlé nohy stativu proti bublině, v závislosti na tom, kterým směrem se má bublina pohnout. Je to iterativní proces a případně se musí několikrát opakovat.

7. Když je bublina krabicové libely uprostřed, nastaví se posunutím přístroje na taliři stativu laserová olovnice vystředěně na bod na zemi.

8. Aby bylo možné přístroj spustit, musí být elektronická "krabicová libela" s příslušnou přesností vystředěna pomocí stavěcích šrobů.

UPOZORNĚNÍ Šipky ukazují směr otáčení stavěcích šrobů trojnožky, aby se bubliny posunuly do středu.

Tepře poté lze přístroj spustit.

Vyrovnajte přístroj

| Aplikace: Měření & zaznamenání/Glare | 08/06/11 | 10:06 |

Zvýšení intenzity laserové olovnice (stupně 1-4).

- Snížení intenzity laserové olovnice (stupně 1-4).

OK

Potvrďte nivelaci.

Symbol pro zobrazení laserové olovnice. Čím větší tloušťka čáry, tím intenzivnější světlo laserové olovnice.

OK

Zobrazení elektronické libely. Nastavte bubliny libely do středu.

9. Po nastavení elektronické krabicové libely zkontrolujte laserovou olovnici nad bodem na zemi a případně přístroj ještě posuňte na taliři stativu.

10. Spusťte přístroj.

UPOZORNĚNÍ Tlačítko OK je aktivní, jsou-li bubliny libely pro délkou (Ln) a příčku (Offs) v rozmezí 45° celkového sklonu.

7.7.3 Instalace nad trubky a pomocí laserové olovnice

Body na zemi jsou často vyznačené trubkami.

V tom případě míří laserová olovnice do trubky, bez vizuálního kontaktu.

Aby byl laserový bod viditelný, položte na trubku papír, fólii nebo jiný mírně průhledný materiál.
7.8 Aplikace Teodolit

V aplikaci Teodolit jsou k dispozici základní funkce teodolitu pro nastavení odečítání hodnot na vodorovném kruhu.

Zvolte úkol

<table>
<thead>
<tr>
<th>Úkol</th>
<th>Datum</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hů</td>
<td>08/06/11 10:18</td>
<td>341° 48' 33"</td>
</tr>
<tr>
<td>Vů</td>
<td></td>
<td>67° 26' 33"</td>
</tr>
<tr>
<td>Hv</td>
<td></td>
<td>3.648 m</td>
</tr>
</tbody>
</table>

Teod V% Měř Aplik

Vyvolání aplikace Teodolit pro nastavení hodnot vodorovného kruhu.

7.8.1 Nastavení zobrazení vodorovného kruhu

Odečítání hodnot na vodorovném kruhu je aretováno, nový cíl zaměřen a poté je odečítání hodnot na kruhu znovu uvolněno.

Nastavte Hů

<table>
<thead>
<tr>
<th>Úkol</th>
<th>Datum</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hů</td>
<td>08/06/11 10:09</td>
<td>339° 04' 11"</td>
</tr>
<tr>
<td>Vů</td>
<td></td>
<td>85° 42' 01"</td>
</tr>
</tbody>
</table>

Fix Hů Hů = 0 OK

Zadržení aktuálního odečtu hodnot na vodorovném kruhu.

Fixujte a nastavte Hů

<table>
<thead>
<tr>
<th>Úkol</th>
<th>Datum</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hů</td>
<td>08/06/11 10:10</td>
<td>339° 04' 08"</td>
</tr>
</tbody>
</table>

Zruš OK

Přerušení a návrat k předchozímu zobrazení beze změny hodnoty Hů.

Nastavení vodorovné hodnoty (Hů) v zobrazení.

7.8.2 Ruční zadávání odečítání hodnot na kruhu

V každé pozici lze ručně zadávat jakékoli odečítání hodnot na kruhu.
7.8.3 Nastavení odečítání hodnot na kruhu na nulu
S možností Hů "nula" lze odečítání hodnot na vodorovném kruhu jednoduše a rychle nastavit na "nula".

7.8.4 Indikace svislého sklonu
Odečítání hodnot na svislém kruhu lze přepínat mezi zobrazením ve stupních a v procentech.

UPOZORNĚNÍ
Zobrazení v procentech je aktivní pouze pro tento ukazatel.

Sklony tak lze měřit, resp. vyrovnávat v %.
8. Systémová nastavení

8.1 Konfigurace

V programové nabídce lze přejít do konfigurační nabídky stisknutím tlačítka Konfigurace.

Konfigurace

8.1.1 Nastavení

Nastavení pro úhly a vzdálenosti, úhlové rozlišení a nastavení svislého kruhu na nulu.
Změňte nastavení

Aplikace: Konfigurace/Nastavení

<table>
<thead>
<tr>
<th>Úhlové jednotky</th>
<th>SMS (° ' ″)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úhlové rozlišení</td>
<td>1"</td>
</tr>
<tr>
<td>Vů nula</td>
<td>Zenit</td>
</tr>
<tr>
<td>Jedn. vzdál.</td>
<td>mětr</td>
</tr>
<tr>
<td>Decimál formát</td>
<td>1000.0</td>
</tr>
</tbody>
</table>

Zruš | Další | OK

Nastavení automatických podmínek odpojení, zvukového znamení a volby jazyka.

Změňte nastavení

Aplikace: Konfigurace/Nastavení

<table>
<thead>
<tr>
<th>Auto zap/vyp</th>
<th>Vyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beep</td>
<td>Vyp</td>
</tr>
<tr>
<td>Jazyk</td>
<td>Čeština</td>
</tr>
</tbody>
</table>

Zruš | Zpět | OK

Mozná nastavení

<table>
<thead>
<tr>
<th>Úhlové jednotky</th>
<th>GMS (° ' ″)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gon</td>
</tr>
<tr>
<td>Úhlové rozlišení</td>
<td>1", 5", 10"</td>
</tr>
<tr>
<td></td>
<td>5cc, 10cc, 20cc</td>
</tr>
<tr>
<td>Vů nula</td>
<td>Zenit</td>
</tr>
<tr>
<td></td>
<td>Horizont</td>
</tr>
<tr>
<td>Vzdálenost</td>
<td>mětr</td>
</tr>
<tr>
<td></td>
<td>US stopa, mezin. stopa, Ft/in-1/8, Ft/in-1/16</td>
</tr>
<tr>
<td>Decimál. formát</td>
<td>1000.0</td>
</tr>
<tr>
<td></td>
<td>1000.0</td>
</tr>
<tr>
<td>Auto zap/vyp</td>
<td>Zap</td>
</tr>
<tr>
<td></td>
<td>Zapíná časově podminěný vypínací režim. Po cca 5 min přepne přístroj do klidového stavu.</td>
</tr>
<tr>
<td></td>
<td>Vyp</td>
</tr>
<tr>
<td></td>
<td>Vypíná časově podminěný vypínací režim.</td>
</tr>
<tr>
<td>Beep zap/vyp</td>
<td>Zap</td>
</tr>
<tr>
<td></td>
<td>Zapíná zvukový signál v případě chyby.</td>
</tr>
<tr>
<td></td>
<td>Vyp</td>
</tr>
<tr>
<td>Jazyk</td>
<td>Zde lze zvolit jazyk pro dotykovou obrazovku.</td>
</tr>
</tbody>
</table>
8.2 Čas a datum

Přístroj je vybaven elektronickými systémovými hodinami, které mohou zobrazit čas a datum v různých formátech a zohlednit příslušné časové pásmo a přechod na letní čas.

Zvolte úkol

Aplik > Úvodní nabídka

<table>
<thead>
<tr>
<th>Hů</th>
<th>Vů</th>
<th>Hv</th>
</tr>
</thead>
<tbody>
<tr>
<td>341° 48' 33"</td>
<td>67° 26' 33"</td>
<td>3.648 m</td>
</tr>
</tbody>
</table>

Zadávání času a data v následujícím zobrazení

Změňte datum/čas

Aplik > Nast. datum/čas

<table>
<thead>
<tr>
<th>Čas</th>
<th>Datum</th>
<th>Formát času</th>
<th>Formát data</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:22</td>
<td>08/06/11</td>
<td>24 hodin</td>
<td>DD/MM/RR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cas. zóna</th>
<th>OK</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Změňte časovou zónu</th>
<th>OK</th>
</tr>
</thead>
</table>

Vyvolání nabídek pro zadávání data a času.

Cas. zóna	Výběr času a data a přepínání časových pásm.

Vyvolání zadávání časového pásma a automatického přepínání zimního a letního času.

OK	Uložení zobrazených hodnot a návrat k předchozímu zobrazení.

Přerušení a návrat k předchozímu zobrazení.

OK	Uložení zobrazených hodnot a návrat k předchozímu zobrazení.
Možná nastavení

<table>
<thead>
<tr>
<th>Formáty času</th>
<th>12 hodin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 hodin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formáty data</th>
<th>DD/MM/YY = den/měsíc/rok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MM/DD/YY = měsíc/den/rok</td>
</tr>
<tr>
<td></td>
<td>YY/MM/DD = rok/měsíc/den</td>
</tr>
</tbody>
</table>

| Časová pásma | GMT -12 hod. až GMT +13 hod. Časová pásma jsou patrná podle hlavních měst. |

<table>
<thead>
<tr>
<th>Automatický letní čas</th>
<th>Zap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vyp</td>
</tr>
</tbody>
</table>

9. Nabídka funkcí (FNC)

Tlačítkem FNC je vyvolána nabídka funkcí.
Vyvolání této nabídky je v systému vždy k dispozici.

<table>
<thead>
<tr>
<th>Zvolte funkci</th>
<th>08/06/11 10:26</th>
</tr>
</thead>
</table>

- Nav světlo: Vyp
- Laser: Vyp
- Jas: 5 / 5
- Libela

ppm

Nabídka pro zadávání různých atmosférických dat.

OK

Převzetí nastavení a ukončení nabídky FNC.

9.1 Naváděcí světlo

<table>
<thead>
<tr>
<th>Zvolte funkci</th>
<th>08/06/11 10:26</th>
</tr>
</thead>
</table>

- Nav světlo: Vyp
- Laser: Vyp
- Jas: 5 / 5
- Libela

ppm

Nav světlo: Vyp

Zapnutí resp. vypnutí naváděcího světla a změna frekvence blikání (vypnutí blikání, 1 (pomalu) až 4 (rychle)).
9.2 Laserový ukazatel

Zvolte funkci

Zapnutí resp. vypnutí laserového ukazatele.

9.3 Podsvícení displeje

Zvolte funkci

Zapnutí resp. vypnutí podsvícení displeje a změna jeho intenzity. Čím vyšší světlost, tím větší je spotřeba proudu.

9.4 Elektronická libela

Viz kapitolu 7.7.1 Instalace pomocí bodu na zemi a laserové olovnice.

9.5 Atmosférické korekce

Přístroj používá pro měření vzdáleností viditelný laser.
V zásadě platí, že při pohybu světla vzduchem je rychlost světla snížena hustotou vzduchu.
Tyto vlivy se mění podle hustoty vzduchu.
Hustota vzduchu podstatně závisí na tlaku a teplotě vzduchu s výrazně menším vlivem vlhkosti vzduchu.
Pro přesné měření vzdálenosti je nezbytné zohledňovat atmosférické vlivy.
Přístroj automaticky vypočítává a koriguje příslušné vzdálenosti, k tomu je však třeba zadat teplotu a tlak okolního vzduchu.
Tyto parametry lze zadávat v různých jednotkách.

9.5.1 Korekce atmosférických vlivů

- Zvolte funkci
 - **Nav světlo**: Vyp
 - **Laser**: Vyp
 - **Jas**: 5 / 5
 - **Libela**

- **Nastavení ppm**
 - **Jedn. tlaku**: mbar
 - **Jedn. tepl.**: °C
 - **Tlak**: 1013 mbar
 - **Teplota**: 20.0 °C
 - **ppm**: -1

1. Zvolte možnost ppm.
2. Zvolte příslušné jednotky a zadejte tlak a teplotu.

Atmosférická nastavení a jejich hodnoty

<table>
<thead>
<tr>
<th>Jednotka (tlak)</th>
<th>hPa</th>
<th>mmHg</th>
<th>mbar</th>
<th>inHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednotka (teplota)</td>
<td>°C</td>
<td>°F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Funkce k aplikacím

10.1 Projekty

Před použitím nějaké aplikace s tachometrem musí být projekt otevřen resp. zvolen. Je-li k dispozici alespoň jeden projekt, zobrazí se výběr projektů, neexistuje-li žádný projekt, přeje se ihned na vytvoření nového projektu. Všechna data jsou přiřazena aktivnímu projektu a jako taková uložena.
10.1.1 Zobrazení aktivního projektu
Je-li již v paměti uložen jeden nebo více projektů a jeden z nich je používán jako aktivní projekt, musí být tento projekt při každém novém spuštění aplikace potvrzen, zvolen jiný projekt nebo vytvořen nový projekt.

![Podr. projektu](image)

<table>
<thead>
<tr>
<th>Podr. projektu</th>
<th>08/06/11 10:35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projekt</td>
<td>Layout_New_Bldg</td>
</tr>
<tr>
<td>Datum</td>
<td>18/02/11</td>
</tr>
<tr>
<td>Čas</td>
<td>13:29</td>
</tr>
<tr>
<td>Poč. bodů</td>
<td>276</td>
</tr>
<tr>
<td>Počet Stan</td>
<td>67</td>
</tr>
</tbody>
</table>

Návrat k předchozímu zobrazení.

Výběr nebo vytvoření nového projektu.

Potvrzení zobrazeného projektu jako aktuálního projektu.

10.1.2 Výběr projektu

![Zvolte projekt](image)

<table>
<thead>
<tr>
<th>Zvolte projekt</th>
<th>08/06/11 10:34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zpět</td>
<td></td>
</tr>
<tr>
<td>Náhled</td>
<td>Zobrazení projektových informací.</td>
</tr>
<tr>
<td>Nové</td>
<td>Výběr nebo vytvoření nového projektu.</td>
</tr>
<tr>
<td>OK</td>
<td>Potvrzení vybraného projektu.</td>
</tr>
</tbody>
</table>

Zvolte jeden ze zobrazených projektů, který má být nastaven jako aktuální projekt.

10.1.3 Vytvoření nového projektu

Všechna data jsou vždy přiřazena jednomu projektu.
Nový projekt je třeba vytvořit tehdy, když mají být přiřazena nová data a tato data mají být používána pouze v něm.
Při vytvoření nového projektu je současně uloženo datum a čas vytvoření a počet příslušných stanic tohoto projektu a zároveň je počet bodů nastaven na nulu.
UPOZORNĚNÍ
Při chybném zadání se objeví chybové hlášení vyzývající k novému zadání.

10.1.4 Projektové informace
V projektových informacích je zobrazen aktuální stav projektu, např. datum a čas vytvoření, počet stanic a celkový počet uložených bodů.

10.2 Staničení a orientace
Této kapitole věnuje prosím zvýšenou pozornost. Nastavení stanice je jedním z nejdůležitějších úkolů při používání tachymetru a vyžaduje velkou pečlivost. Nejprve největším a nejistotnějším způsobem je přítom postavení na bodu na zemi a použití bezpečného záměrného bodu. Možnosti "volného staničení" nabízejí větší pružnost, představují však rizika opominutí chyb, dalšího zpracování chybných výsledků atd. Tyto možnosti navíc vyžadují jistou zkušenost při výběru pozice přístroje ve vztahu k referenčním bodům, které jsou použity pro výpočet pozice.

UPOZORNĚNÍ
Mějte na paměti: Je-li špatná stanice, je špatně vše, co je následně z této stanice měřeno – a to jsou vlastní práce jako měření, vytýcování, seřizování atd.
10.2.1 Přehled

V určitých aplikacích, které používají absolutní pozice, je po fyzické instalaci přístroje, resp. stanice rovněž nutné stanovit pozici stanice pomocí dat, protože je v aplikaci třeba vědět, na jaké pozici přístroj stojí.

Tuto pozici lze definovat buď pomocí souřadnic, nebo pomocí instalace na stavební ose. Tento postup se nazývá **nastavení stanice**.

Kromě pozice přístroje je také třeba vědět, v jakém směru leží referenční osy, resp. znát směr hlavní osy.

Hlavní osa leží v případě souradnic ve většině případů v severním směru nebo v případě stavebních os je to směr stavební osy.

Je třeba znát směr referenčních os, protože vodorovný dělený kruh je svou "nulovou značkou" takřka rovnoběžný nebo otočený směrem k hlavní ose.

Tento postup se nazývá **orientace**.

Možnosti určení stanice lze využít takřka ve dvou systémech.

Buď v systému stavebních os, kde jsou k dispozici, resp. zadávány délky a pravoúhlé vzdálenosti, nebo v pravoúhlém souřadnicovém systému.

Při definování stanice je určen staniční, resp. měřicí systém.

<table>
<thead>
<tr>
<th>4 možnosti určení stanice přístroje</th>
<th>Přerušení a návrat k předchozímu zobrazení.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td> Potvrzení výběru a pokračování k určení stanice.</td>
</tr>
</tbody>
</table>

UPOZORNĚNÍ

Postup nastavení stanice vždy obsahuje stanovení pozice a orientaci.

Je-li spuštěna jedna ze čtyř aplikací, jako např. Vodorovné vytyčení, Svislé vytyčení, Proměřování, Měření a zaznamenání, musí být určena stanice a orientace.

Má-li se navíc ještě pracovat s výškami, tj. mají být určovány nebo vytyčovány záměrné výšky, je třeba určit výšku středu dalekohledu přístroje.
Shrnutí možností instalace stanice (6 možností)

<table>
<thead>
<tr>
<th>Výšky</th>
<th>Zap, Vyp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nastavení, zda mají být výšky vypočítány resp. zobrazeny.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bod. systém</th>
<th>Stavebn. osa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ruční zadávání dat, která se vztahují na stavební osu (Délka, Příč).</td>
</tr>
</tbody>
</table>

| Souřad / Plán | Používání souřadnic nebo plánu resp. grafických dat CAD. |

<table>
<thead>
<tr>
<th>Instal. stan.</th>
<th>Nad bodem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stanice přístroje se nachází nad bodem s vy- značenou a známou pozicí.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volná stan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanice přístroje stojí nezávisle. Pozice stanice musí být naměřena resp. vypočítána z měřicích dat.</td>
</tr>
</tbody>
</table>

10.2.2 Nastavení stanice na bodu pomocí stavebních os

Mnoho stavebních prvků se kótováním nebo popisem pozice vztahuje na stavební osy v plánu. S tachymetrem lze rovněž použít stavební osy a jejich příslušné kótování.

<table>
<thead>
<tr>
<th>Zvolte typ stanice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výšky</td>
</tr>
<tr>
<td>Bod systém</td>
</tr>
<tr>
<td>Stan nastav.</td>
</tr>
</tbody>
</table>

Zruš OK

Přerušení a návrat k předchozímu zobrazení.

Potvrzení výběru a pokračování k určení stanice.

Instalace přístroje na bodu na stavební ose

Přístroj je postaven na označený bod na stavební ose, ze kterého jsou dobře viditelné měřené body, resp. prvků.

Především je třeba zajistit bezpečné a pevné postavení pomocí stativu.
Pozice přístroje P0 a orientační bod P1 leží na společné stavební ose.

10.2.2.1 Zadávání staničního bodu

Pro staniční bod, resp. stanoviště přístroje musí být zadáno označení pro jednoznačnou identifikaci, protože na základě uložení staničních dat je nutné jednoznačné označení.

![Zadejte stanici](image1.png)

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>Sta4</th>
<th>H</th>
<th>N</th>
<th>E</th>
</tr>
</thead>
</table>

- **Zpět** Návrat k předchozímu zobrazení.
- **Dále** Potvrzení zadání stanice a pokračování s orientací.

10.2.2.2 Zadávání záměrného bodu

Pro orientační bod musí být zadáno označení pro jednoznačnou identifikaci při ukládání dat.

![Zadávání orient. bodu](image2.png)

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>Sta</th>
<th>Ori Bod</th>
<th>R1</th>
<th>N008_S</th>
<th>Rb_C</th>
</tr>
</thead>
</table>

- **Zpět** Návrat k předchozímu zobrazení.
- **Dále** Pokračování k orientačnímu měření.
- **Měř** Měření úhlu a vzdálenosti. Pokračování se zobrazením nově vypočítané výšky stanice.
Po zadání orientačního bodu musí být provedeno "měření" k orientačnímu bodu. K tomu je třeba co nejprveňji zaměřit orientační bod nebo záměrný bod.

10.2.2.3 Nastavení stanice pomocí stavební osy

Po změření úhlů pro orientaci je ihned provedeno nastavení stanice.

UPOZORNĚNÍ

Stanice je vždy uložena ve vnitřní paměti. Pokud již název stanice v paměti existuje, musí být stanice přejmenována, resp. zadán nový název stanice.

Po nastavení stanice pokračuje používání vlastní zvolené hlavní aplikace.

10.2.2.4 Posunutí a otočení osy

Posunutí osy

Počáteční bod osy lze posunout, aby bylo možné použít jinou referenci jako počátek souřadnicového systému. Pokud je zadaná hodnota kladná, posune se osa dopředu, je-li záporná, pak dozadu. Počáteční bod se v případě kladné hodnoty posune doprava, v případě záporné hodnoty doleva.

Otočení osy

Směr osy lze otočit kolem počátečního bodu. Při zadání kladných hodnot se osa otočí ve směru hodinových ručiček, v případě záporných hodnot proti směru hodinových ručiček.
Po nastavení stanice pokračuje používání vlastní zvolené hlavní aplikace.

10.2.3 Volné staničení se stavebními osami
Volné staničení umožňuje určení pozice stanice pomocí měření úhlů a vzdáleností ke dvěma referenčním bodům.
Možnost volné instalace se používá v případě, že stanici nelze postavit na bodu stavební osy nebo je výhled na měřené pozice znemožněn.
Při volném instalaci resp. volném staničení je třeba zvláštní pečlivosti.
Pro určení stanice se provádí dodatečná měření, která vždy představují riziko chyb.
Kromě toho je třeba dbát na to, aby geometrické poměry poskytly použitelnou pozici.
Přístroj především prověřuje geometrické poměry, aby vypočítal použitelnou pozici, a upozorňuje na kritické případy.
Avšak zvláštní pečlivost je zde povinností uživatele - protože software nemůže rozpoznat všechno.

Volná instalace přístroje pomocí stavební osy
Pro volnou instalaci je třeba najít bod na přehledném místě, aby byly dobře viditelné dva referenční body stejné stavební osy a současně byla zaručena co nejlepší viditelnost k měřeným bodům.
V každém případě je vhodné nejprve udělat na země značku a poté na ní postavit přístroj. Tak je vždy zajištěna možnost následného opětovného ověření pozice a zjištění případných nejasností.
Následně měřené referenční body musí ležet na stavební ose nebo v případě, že není k dispozici žádná osa, je stavební osa resp. referenční osa definována.
Pozice přístroje P0 leží mimo stavební osu. Měření k prvnímu referenčnímu bodu P1 stanoví počátek stavební osy, zatímco druhý referenční bod P2 zavádí směr stavební osy do systému přístroje.

U následujících aplikací se počítání podélných hodnot vztahuje na směr stavební osy s hodnotou 0.000 u prvního referenčního bodu.
Příčné hodnoty se ke stavební ose vztahují jako pravoúhlé vzdálenosti.

10.2.3.1 Měření k prvnímu referenčnímu bodu na stavební ose

<table>
<thead>
<tr>
<th>Změřte Ref Bod 1</th>
<th>08/06/11 12:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref Bod 1</td>
<td>R1</td>
</tr>
<tr>
<td>Hů</td>
<td>14° 47' 28"</td>
</tr>
<tr>
<td>Vů</td>
<td>75° 23' 48"</td>
</tr>
<tr>
<td>Hv</td>
<td>---</td>
</tr>
</tbody>
</table>

Zpět | Měř | Dále

Zadávání názvu orientačního bodu.

Návrat k předchozímu zobrazení.

Změřit úhel a vzdálenost.

Pokračování k měření ke druhému referenčnímu bodu.

10.2.3.2 Měření k druhému referenčnímu bodu

<table>
<thead>
<tr>
<th>Zvolte ref. bod 2</th>
<th>29/06/11 04:22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. bod 2</td>
<td>16</td>
</tr>
<tr>
<td>Hů</td>
<td>165° 19' 12"</td>
</tr>
<tr>
<td>Vů</td>
<td>72° 42' 47"</td>
</tr>
<tr>
<td>Hv</td>
<td>3.117 m</td>
</tr>
</tbody>
</table>

Zpět | Kontr. V | Měř | Dále

Návrat k měření k prvnímu referenčnímu bodu.

Měření úhlu a vzdálenosti.

Pokračování k nastavení stanice.

Kontrola vzdálenosti mezi referenčními body.
Pokračujte kontrolou vzdálenosti mezi stanicí a orientačním bodem podle popisu v příslušných kapitolách.

10.2.3.3 Nastavení stanice

Po změření úhlů pro orientaci je ihned provedeno nastavení stanice.

![Nastavte stanici](image)

UPOZORNĚNÍ

Stanice je vždy uložena ve vnitřní paměti. Pokud již název stanice v paměti existuje, musí být stanice přejmenována, resp. zadán nový název stanice.

Pokračujte otočením osy a posunutím osy podle popisu v příslušných kapitolách.

10.2.4 Nastavení stanice na bodu pomocí souřadnic

Na mnoha stavbách jsou k dispozici body z vyměřování s příslušnými souřadnicemi nebo pozice stavebních prvků, stavebních os, základů atd. popsané souřadnicemi.

V tomto případě lze při instalaci stanice rozhodnout, zda bude pracovat v systému souřadnic nebo stavebních os.

![Zvolte typ stanice](image)

Instalace přístroje na bodu pomocí souřadnic

Přístroj je postaven na označený bod na zemi, jehož pozice daná souřadnicemi je známa a z něhož jsou dobře viditelné měřené body, resp. prvký.

Především je třeba zajistit bezpečné a pevné postavení pomocí stativu.
Pozice přístroje se nachází na souřadnicovém bodu P0 a pro orientaci zaměřuje jiný souřadnicový bod P1.
Přístroj vypočítá polohu v souřadnicovém systému.
Pro lepší identifikaci orientačního bodu lze změřit vzdálenost a porovnat ji se souřadnicemi.

UPOZORNĚNÍ
Tím je dána větší jistota pro správnou identifikaci orientačního bodu. Má-li souřadnicový bod P0 také výšku, je nejprve použíta jako výška stanice. Před konečným stanovením stanice lze výšku stanice vždy nově určit nebo změnit.

Orientační bod je rozhodující pro správný výpočet směru, a proto by měl být vybrán a změřen pečlivě.

10.2.4.1 Zadání polohy stanice

Pro staniční bod, resp. stanoviště přístroje musí být zadáno označení s jednoznačnou identifikací a k tomuto označení musí patřit souřadnicová pozice.
Tj. staniční bod může být v projektu k dispozici jako uložený bod nebo musí být souřadnice zadány ručně.

Zadejte stanici

![Zadejte stanici](image)

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>Sta4</th>
</tr>
</thead>
</table>

| 08/06/11 12:14 |

Zadávání názvu stanice.

Zpět

Návrat k předchozímu zobrazení.

Dále

Potvrzení zadání stanice a pokračování s orientací.

Po zadání názvu staničního bodu jsou vyhledány příslušné souřadnice nebo pozice z uložených grafických dat.
Nejsou-li pod zadaným názvem k dispozici žádná bodová data, musí být souřadnice zadány ručně.

10.2.4.2 Zadávání záměrného bodu

Pro záměrný bod musí být zadáno označení s jednoznačnou identifikací a k tomuto označení musí patřit souřadnicová pozice.
Záměrný bod musí být v projektu k dispozici jako uložený bod nebo musí být souřadnice zadány ručně.

Printed: 07.07.2013 | Doc-Nr: PUB / 5070144 / 000 / 00
Zadávání orient. bodu

Stan ID	Sta4
Ori Bod | 10

Zpět | Kontr. V | Dále

Zadávání názvu orientačního bodu.
Návrat k předchozímu zobrazení.
Kontrola vzdálenosti mezi stanicí a orientačním bodem.
Pokračování k nastavení stanice.
Měření úhlu a vzdálenosti.

UPOZORNĚNÍ
Při zadávání názvu orientačního bodu jsou příslušné souřadnice nebo pozice vyhledány z uložených grafických dat. Nejsou-li pod tímto názvem k dispozici žádná bodová data, musí být souřadnice zadány ručně.

Volitelná kontrola vzdálenosti mezi stanicí a orientačním bodem
Po zadání záměrného bodu musí být tento bod přesně zaměřen pro orientační měření. Po změření orientace existuje možnost kontroly vzdáleností mezi stanicí a orientací. Je to pomůcka pro ověření správného výběru bodu a správného zaměření tohoto bodu a ukazuje, jak dobře se naměřená vzdálenost shoduje se vzdáleností vypočítanou ze souřadnic.

Provéřte vzdálenost

Stan ID	Sta6
Ori Bod | 10

dHv | -0.504 m

Zpět | Měř

Údaj dHv je rozdílem mezi naměřenou a ze souřadnic vypočítanou vzdáleností. Stisknutím tlačítka Další lze zkontrolovat další body. Na displeji se kromě dHv navíc zobrazí hodnota pro dHÚ, což je rozdíl mezi změřeným vodorovným úhlem a vodorovným úhlem vypočítaným pomocí souřadnic.

10.2.4.3 Nastavení stanice
Stanice je vždy uložena ve vnitřní paměti. Pokud již název stanice v paměti existuje, musí být stanice přejmenována, resp. zadán nový název stanice.
10.2.5 Volné stanice í se souřadnicemi

Volné stanice umožňuje určení pozice stanice pomocí měření úhlů a vzdáleností ke dvěma referenčním bodům.

Možnost volné instalace se používá v případě, že stanici nelze postavit na bodu stavební osy nebo je výhled na měřené pozice znemožněn.

Při volné instalaci resp. volném stanicí je třeba zvláštní pečlivost.

Pro určení stanice se provádějí dodatečná měření, která vždy představují riziko chyb.

Kromě toho je třeba dbát na to, aby geometrické poměry poskytyly použitelnou pozici.

Přístroj především prověřuje geometrické poměry, aby vypočítal použitelnou pozici, a upozorňuje na kritické případy.

Avšak zvláštní pečlivost je ze povinnosti uživatele - protože software nemůže rozpoznat všechno.

Volná instalace přístroje pomocí souřadnic

Pro volnou instalaci je třeba najít bod na přehledném místě, aby byly dobře viditelné dva souřadnicové body a současně byla zaručena co nejlepší viditelnost k měřeným bodům.

V každém případě je vhodné nejprve udělat na zemi značku a poté na ni postavit přístroj.

Tak je vždy zajištěna možnost následného opětovného ověření pozice a zjištění případných nejasností.
Pozice přístroje je dána volným bodem P₀ a postupným změřením úhlu a vzdálenosti ke dvěma referenčním bodům opatřeným souřadnicemi P₁ a P₂.
Následně je pozice přístroje P₀ určena z měření k oběma referenčním bodům.

UPOZORNĚNÍ
Jsou-li oba nebo pouze jeden referenční bod opatřeny výškou, je výška stanice vypočítána automaticky. Před konečným stanovením stanice lze výšku stanice vždy nově určit nebo změnit.

10.2.5.1 Měření k prvnímu referenčnímu bodu

<table>
<thead>
<tr>
<th>Změřte Ref Bod 1</th>
<th>08/06/11 12:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref Bod 1</td>
<td>R₁,h₁₀₀₀</td>
</tr>
<tr>
<td>Hú</td>
<td>14° 47' 28"</td>
</tr>
<tr>
<td>Vú</td>
<td>75° 23' 48"</td>
</tr>
<tr>
<td>Hv</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zpět</th>
<th>Měř</th>
<th>Dále</th>
</tr>
</thead>
</table>
| **B_5** | Zadávání názvu orientačního bodu. | Návrat k předchozímu zobrazení. | Změřit úhel a vzdálenost. | Pokračování k měření ke druhému referenčnímu bodu. |}

Příslušné souřadnice nebo pozice jsou vyhledány z uložených grafických dat.
Nejsou-li pod tímto názvem k dispozici žádná bodová data, musí být souřadnice zadány ručně.
10.2.5.2 Měření k druhému referenčnímu bodu

<table>
<thead>
<tr>
<th>Zpět</th>
<th>Kontr. V</th>
<th>Měř</th>
<th>Dále</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refer. bod 2 16

Hů 165° 19' 12"
Vů 72° 42' 47"
Hv 3.117 m

Návrat k měření k prvnímu referenčnímu bodu.

Měření úhlu a vzdálenosti.

Pokračování k nastavení stanice.

Kontrola vzdálenosti mezi referenčními body.

Pokračujte kontrolou vzdálenosti mezi stanicí a orientačním bodem podle popisu v příslušných kapitolách.

10.2.5.3 Nastavení stanice

Stanice je vždy uložena ve vnitřní paměti. Pokud již název stanice v paměti existuje, musí být stanice přejmenována, resp. zadán nový název stanice.

10.3 Nastavení výšky

Má-li se navíc kromě staničení a orientace ještě pracovat s výškami, tj. mají být určovány nebo vytýčovány záměrné výšky, je třeba určit výšku středu dalekohledu přístroje. Výšku lze nastavit dvěma různými metodami:

1. V případě známé výšky bodu na zemi se změří výška přístroje – obě hodnoty poskytnou výšku středu dalekohledu.
2. K bodu nebo značce se známou výškou se provádí měření úhlů a vzdáleností a výška středu dalekohledu je tak určena, resp. zpětně přenesena pomocí "měření".

10.3.1 Nastavení stanice pomocí stavební osy (s možností Výška "zap")

Je-li nastavena možnost s výškami, je v zobrazení Nastavte stanici uvedena výška stanice. Může být potvrzena nebo nově určena.

Printed: 07.07.2013 | Doc-Nr: PUB / 5070144 / 000 / 00
Určení nové výšky stanice
Výšku stanice lze určit dvěma různými způsoby:

1. Přímé ruční zadání výšky stanice.
2. Určení výšky stanice pomocí ručního zadání výšky výškové značky a měření svislého úhlu a vzdálenosti.

1. Přímé ruční zadání výšky stanice
Po zvolení možnosti nového určení výšky stanice v předchozím zobrazení lze ručně zadat novou výšku stanice.

2. Určení výšky stanice pomocí zadání výšky a měření svislého úhlu a vzdálenosti
Zadáním referenční výšky, výšky přístroje a výšky reflektoru ve spojení s měřením svislého úhlu a vzdálenosti je výška stanice takřka zpětně převedena z výškové značky na stanici. K tomu je bezpodmínečně nutné zadat správnou výšku přístroje a výšku reflektoru.
Zadávání refer výšky

- v.ref: 0.400 m
- VÚ: 75° 23' 44"
- v.přís: 0.800 m
- v.rf: 0.500 m

Zobrazení nově vypočítané výšky stanice po měření
Po měření úhlu a vzdálenosti je nově vypočítaná výška stanice zobrazena a může být potvrzena nebo zrušena.

Nastavte výšku stanice

- Stan ID: Sta
- Stan Výš: -1.081 m
- v.přís: 0.800 m
- v.rf: 0.500 m

Nastavení stanice

- Stan ID: Sta
- Ori Bod: R1
- Stan Výš: 0.400 m
- v.přís: 0.800 m

UPozornění
Je-li zapnuta možnost "Výšky", musí být pro stanici stanovena výška, resp. zadána hodnota pro výšku stanice.
UPOZORNĚNÍ
Stanice je vždy uložena ve vnitřní paměti, pokud již název stanice v paměti existuje, musí být stanice přejmenována, resp. zadán nový název stanice.

Po nastavení stanice pokračuje používání vlastní zvolené hlavní aplikace.

10.3.2 Nastavení stanice pomocí souřadnic (s možností Výška "zap")

Určení nové výšky stanice
Výšku stanice lze určit třemi různými způsoby:

- **Přímé ruční zadání výšky stanice**
- **Určení výšky stanice pomocí ručního zadání výšky výškové značky a měření svislého úhlu a vzdálenosti**
- **Určení výšky stanice pomocí výběru bodu s výškou z datové paměti a měření svislého úhlu a vzdálenosti k tomuto bodu**

Stanovte výšku stanice

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>Sta7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stan Výš</td>
<td>0.800 m</td>
</tr>
<tr>
<td>v.přísluš.</td>
<td>1.000 m</td>
</tr>
<tr>
<td>v.rf</td>
<td>0.500 m</td>
</tr>
</tbody>
</table>

1. **Přímé ruční zadání výšky stanice**
Po zvolení možnosti nového určení výšky stanice v předchozím zobrazení lze ručně zadat novou výšku stanice.

Zadávání refer výšky

<table>
<thead>
<tr>
<th>v.ref</th>
<th>0.400 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vů</td>
<td>75° 23' 44"</td>
</tr>
<tr>
<td>v.přísluš.</td>
<td>0.800 m</td>
</tr>
<tr>
<td>v.rf</td>
<td>0.500 m</td>
</tr>
</tbody>
</table>

2. **Určení výšky stanice pomocí zadání výšky a měření svislého úhlu a vzdálenosti**
Zadáním referenční výšky, výšky přístroje a výšky reflektoru ve spojení s měřením svislého úhlu a vzdálenosti je výška stanice takřka zpětně převedena z výškové značky na stanici.
K tomu je bezpodmínečně nutné zadat správnou výšku přístroje a výšku reflektoru.
Zadávání refer výšky

Aplikace Výškové měření

<table>
<thead>
<tr>
<th>v.ref</th>
<th>0.400 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vů</td>
<td>75° 23' 44"</td>
</tr>
<tr>
<td>v.přís</td>
<td>0.800 m</td>
</tr>
<tr>
<td>v.rf</td>
<td>0.500 m</td>
</tr>
</tbody>
</table>

Zruš Měř Nastav

Zobrazení nově vypočítané výšky stanice po měření
Po měření úhlu a vzdálenosti je nově vypočítaná výška stanice zobrazena a může být potvrzena nebo zrušena.

Nastavte výšku stanice

Aplikace Výškové měření

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>Sta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stan Výš</td>
<td>-1.081 m</td>
</tr>
<tr>
<td>v.přís</td>
<td>0.800 m</td>
</tr>
<tr>
<td>v.rf</td>
<td>0.500 m</td>
</tr>
</tbody>
</table>

Zruš Nastav

3. Určení výšky stanice pomocí výběru bodů s výškou z datové paměti a měření svislého úhlu a vzdálenosti
Zadáním výškového bodu, výšky přístroje a výšky reflektoru ve spojení s měřením svislého úhlu a vzdálenosti je výška stanice takřka zpětně převedena z výškového bodu, resp. výškové značky na stanici.
K tomu je bezpodmínečně nutné zadat správnou výšku přístroje a výšku reflektoru.

Zvolte výškový bod

Aplikace Výškové měření

<table>
<thead>
<tr>
<th>Výš Bod</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.ref</td>
<td>0.000 m</td>
</tr>
<tr>
<td>Vů</td>
<td>72° 22' 58"</td>
</tr>
<tr>
<td>v.přís</td>
<td>1.000 m</td>
</tr>
<tr>
<td>v.rf</td>
<td>0.500 m</td>
</tr>
</tbody>
</table>

Zruš Měř
Příslušné souřadnice nebo pozice jsou vyhledány z uložených grafických dat. Nejsou-li pod tímto názvem k dispozici žádná bodová data, musí být souřadnice zadány ručně.

Zobrazení nově vypočítané výšky stanice po měření
Po měření úhlu a vzdálenosti je nově vypočítaná výška stanice zobrazena a může být potvrzena nebo zrušena.

Nastavte výšku stanice

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>Sta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stan Výš</td>
<td>-1.081 m</td>
</tr>
<tr>
<td>v.přís</td>
<td>0.300 m</td>
</tr>
<tr>
<td>v.rfB</td>
<td>0.500 m</td>
</tr>
</tbody>
</table>

| Zruš | Nastav |

Nastavení stanice
Je-li nastavena možnost s výškami, je v zobrazení Nastavte stanici uvedena výška stanice. Může být potvrzena nebo nově určena.

Nastavte stanici

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>Sta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ori Bod</td>
<td>10</td>
</tr>
<tr>
<td>Stan Výš</td>
<td>0.800 m</td>
</tr>
<tr>
<td>v.přís</td>
<td>1.000 m</td>
</tr>
</tbody>
</table>

| Zpět | Stan Výš | Náhled | Nastav |

UPOZORNĚNÍ
Je-li zapnuta možnost "Výšky", musí být pro stanici stanovena výška, resp. zadána hodnota pro výšku. Není-li zobrazena žádná výška stanice, objeví se chybové hlášení s pokynem pro určení výšky stanice.

11. Aplikace

11.1 Vodorovné vytýčení (H-vytýčení)

11.1.1 Princip H-vytýčení
Pomocí vytýčení se plánová data přenášejí do terénu. Tato plánová data jsou buď rozměry, které se vztahují na stavební osy, nebo pozice, které jsou popsány pomocí souřadnic.
Plánová data resp. vytyčovací pozice mohou být zadávány jako rozměry resp. vzdálenosti pomocí souřadnic nebo používány jako data, která byla dříve přenesena z počítače.
Plánová data mohou být navíc na tachymetr přenesena z počítače jako výkres CAD a zvolena na tachymetr při vytyčování jako grafický bod resp. grafický prvek.
Proto není třeba manipulovat s velkými čísly či množinami čísel.

Pro spuštění aplikace "Vodorovné vytyčení" se v nabídce aplikace stiskně příslušné tlačítko.

Po vyvolání aplikace se zobrazí projekty resp. výběr projektů (viz kapitolu 13.2) a příslušná volba stanice resp. instalace stanice.
Po instalaci stanice se spustí aplikace "Vodorovné vytyčení".
Podle volby stanice se nabízejí dvě možnosti určení vytyčovaného bodu:

1. Vytyčení bodů pomocí stavebních os.
2. Vytyčení bodů pomocí souřadnic a/nebo bodů na základě výkresu CAD.

11.1.2 Vytyčení pomocí stavebních os
Při vytyčování pomocí stavebních os se zadávané hodnoty vytyčení vztahují vždy na stavební osu, která byla zvolena jako referenční osa.

Zadávání vytyčovacího bodu ke stavební ose
Zadávání vytyčovací pozice jako rozměrů ve vztahu ke stavební ose definované při instalaci stanice resp. stavební ose, na které je přístroj postaven.
Zadávané hodnoty jsou podélné a příčné vzdálenosti ve vztahu k definované stavební ose.
Zadávání hodnot vytyčení

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R49</th>
</tr>
</thead>
<tbody>
<tr>
<td>v. rlf</td>
<td>0.400 m</td>
</tr>
<tr>
<td>Vých</td>
<td>7.000 m</td>
</tr>
<tr>
<td>Sev</td>
<td>6.800 m</td>
</tr>
<tr>
<td>Výš</td>
<td>2.746 m</td>
</tr>
</tbody>
</table>

UPOZORNĚNÍ

Hodnoty vytyčení na stavební ose směrem vpřed a vzad od stanice přístroje jsou podélné hodnoty a hodnoty vytyčení ležící vpravo a vlevo od stavební osy jsou přičné hodnoty. Vpřed a vpravo jsou pozitivní hodnoty, vzad a vlevo jsou negativní hodnoty.

Směr k vytyčovacímu bodu

Pomoci tohoto údaje se přístroj vyrovnává k vytyčovánemu bodu tak, že se přístrojem otáčí tak dlouho, až červený ukazatel směru ukazuje na "nulu" a číselný údaj úhlové rozdílu pod ním stojí dostatečně přesně na "nule". V tomto případě ukazuje nitkový kříž směrem k vytyčovacímu bodu, aby dával znamení nosiči reflektoru. Další možností je, že nosič reflektoru se může pomocí naváděcího zařízení sám směrovat k zámeřné linii.

Vyrovňání a měření

<table>
<thead>
<tr>
<th>v. rlf</th>
<th>0.400 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hů</td>
<td>34° 31' 05"</td>
</tr>
<tr>
<td>Hv</td>
<td>1.414 m</td>
</tr>
</tbody>
</table>

Návrat k předchozímu zobrazení.
P0 je pozice přístroje po instalaci.
P1 je vytyčovací bod a přístroj je již vyrovnán k vytyčovacímu bodu.
Nosič reflektoru stojí přibližně ve vypočítané vzdálenosti.
Po každém měření vzdálenosti se zobrazí, o jakou hodnotu vpřed nebo vzad se musí nosič reflektoru posunout ve směru k vytyčovanému bodu.

Korekce vytyčení po změření vzdálenosti
Po změření vzdálenosti je nosič reflektoru směrován pomocí korekčí vpřed, zpět, vlevo, vpravo, nahoru a dolů.
Je-li nosič reflektoru "zaměřen" přesně v záměrné linii, ukazuje korekční údaj vpravo / vlevo korekci 0.000 m (0.00 ft).

Vytýčení H

<table>
<thead>
<tr>
<th>v.prf</th>
<th>0.400 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
<td>H1</td>
</tr>
<tr>
<td>Vpř</td>
<td>1.918 m</td>
</tr>
<tr>
<td>Vlevo</td>
<td>0.002 m</td>
</tr>
<tr>
<td>Dolů</td>
<td>2.102 m</td>
</tr>
</tbody>
</table>

Zpět	**Výsled**	**Měř**	**D. Bod**
Návrat k zadávání hodnot vytyčení.
Zobrazení a uložení výsledků.
Měření vzdálenosti a datování korekce vytyčení.
Zadávání dalšího bodu.
P0 je pozice přístroje po instalaci. Při měření pozice reflektoru, která neleží přesně ve směru k novému bodu, jsou zobrazeny příslušné korekce vpřed, zpět, vlevo, vpravo k novému bodu P1.

Přehled směrových pokynů k vytyčovacímu bodu počínaje posledním naměřeným záměrným bodem

<table>
<thead>
<tr>
<th>směr</th>
<th>Příkaz</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpř</td>
<td>Nosič reflektoru se musí posunout o zobrazenou hodnotu ve směru k přístroji.</td>
</tr>
<tr>
<td>zpět</td>
<td>Nosič reflektoru se musí posunout o zobrazenou hodnotu ve směru od přístroje.</td>
</tr>
<tr>
<td>vlevo</td>
<td>Nosič reflektoru se musí v pohledu od přístroje posunout o zobrazenou hodnotu vlevo.</td>
</tr>
<tr>
<td>vpravo</td>
<td>Nosič reflektoru se musí v pohledu od přístroje posunout o zobrazenou hodnotu vpravo.</td>
</tr>
<tr>
<td>nahoru</td>
<td>Špice reflektoru se musí posunout o zobrazenou hodnotu nahoru.</td>
</tr>
<tr>
<td>dolů</td>
<td>Špice reflektoru se musí posunout o zobrazenou hodnotu dolů.</td>
</tr>
</tbody>
</table>

Výsledky vytyčení
Zobrazení vytyčovacích rozdílů v hodnotách Délka, Příč a Výška na základě posledního měření záměrného bodu.
UPOZORNĚNÍ

V případě, že při instalaci stanice nebyla nastavena žádná možnost pro výšky, jsou výškové údaje i všechny s nimi související údaje potlačeny.

Ukládání vytýčovacích dat pomocí stavebních os

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>Název vytýčovacího bodu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka (zadaná)</td>
<td>Zadaná podélná vzdálenost vztažená na stavební osu.</td>
</tr>
<tr>
<td>Příč (zadaná)</td>
<td>Zadaná příčná vzdálenost vztažená na stavební osu.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výška.</td>
</tr>
<tr>
<td>Délka (naměřená)</td>
<td>Naměřená podélná vzdálenost vztažená na stavební osu.</td>
</tr>
<tr>
<td>Příč (naměřená)</td>
<td>Naměřená příčná vzdálenost vztažená na stavební osu.</td>
</tr>
<tr>
<td>Výška (naměřená)</td>
<td>Naměřená výška.</td>
</tr>
<tr>
<td>dPříč</td>
<td>Rozdíl v příčné hodnotě na základě stavební osy. dPříč = Příč (naměřená) – Příč (zadaná)</td>
</tr>
<tr>
<td>dLn</td>
<td>Rozdíl v podélné hodnotě na základě stavební osy. dLn = Délka (naměřená) – Délka (zadaná)</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdíl ve výšce. dVýš = Výška (naměřená) – Výška (zadaná)</td>
</tr>
</tbody>
</table>

11.1.3 Vytýčení pomocí souřadnic

Zadávání vytýčovacích bodů

Zadávání hodnot vytýčení pomocí bodových souřadnic lze provádět třemi různými způsoby:

1. Ruční zadávání bodových souřadnic.
2. Výběr bodových souřadnic ze seznamu s uloženými body.
3. Výběr bodových souřadnic z grafiky CAD s uloženými body.
Zadávání hodnot vytyčení

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R49</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.yt</td>
<td>0.400 m</td>
</tr>
<tr>
<td>Vých</td>
<td>7.000 m</td>
</tr>
<tr>
<td>Sev</td>
<td>6.800 m</td>
</tr>
<tr>
<td>Výš</td>
<td>2.746 m</td>
</tr>
</tbody>
</table>

Zadávání vytyčovacích bodů (pomocí výkresu CAD)
Vytyčovací body se vybírají přímo z výkresu CAD.
Přitom je již bod uložen jako trojrozměrný nebo dvojrozměrný bod a příslušným způsobem je extrahován.

Zvolte z plánu

UPOZORNĚNÍ
Je-li instalace stanice nastavena bez výšek, jsou výškové údaje i všechny související údaje potlačeny. Další údaje odpovídají údajům v předchozí kapitole.

P0 je pozice přístroje po instalaci.
P1 je bod daný souřadnicemi. Po vyrovnání přístroje se nosič reflektoru posune k přibližně vypočítané vzdálenosti.
Po každém měření vzdálenosti se zobrazi, o jakou hodnotu se ještě musí nosič reflektoru posunout ve směru k vytyčovanému bodu.

Výsledky vytyčení pomocí souřadnic
Zobrazení vytyčovacích rozdílů v souřadnicích na základě posledních měření vzdáleností a úhlů.

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R49</th>
</tr>
</thead>
<tbody>
<tr>
<td>dVých</td>
<td>-4.914 m</td>
</tr>
<tr>
<td>dSev</td>
<td>-4.343 m</td>
</tr>
<tr>
<td>dVýš</td>
<td>-3.111 m</td>
</tr>
</tbody>
</table>

Návrat k zadávání hodnot vytyčení.

<table>
<thead>
<tr>
<th>Ulož</th>
<th>Uložení hodnot vytyčení a posledních rozdílů.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Bod</td>
<td>Zadávání dalšího bodu.</td>
</tr>
</tbody>
</table>

P0 je pozice přístroje po instalaci.
Při měření pozice reflektoru, která neleží přesně ve směru k novému bodu, jsou zobrazeny příslušné korekce vpřed, zpět, vlevo, vpravo k novému bodu P1.

Ukládání dat vytyčení se souřadnicemi

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Název vytyčovacího bodu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severní souřadnice (zadaná)</td>
<td>Zadaná severní souřadnice vztažená na referenční souřadnicový systém.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Východní souřadnice (zadaná)</td>
<td>Zadaná východní souřadnice vztažená na referenční souřadnicový systém.</td>
</tr>
<tr>
<td>Severní souřadnice (naměřená)</td>
<td>Naměřená severní souřadnice vztažená na referenční souřadnicový systém.</td>
</tr>
<tr>
<td>Výška (naměřená)</td>
<td>Naměřená výška.</td>
</tr>
<tr>
<td>Východní souřadnice (naměřená)</td>
<td>Naměřená východní souřadnice vztažená na referenční souřadnicový systém.</td>
</tr>
<tr>
<td>dSev</td>
<td>Rozdíl severní souřadnice na základě referenčního souřadnicového systému. dSev = severní souřadnice (naměřená) – severní souřadnice (zadaná)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdíl ve výšce. dVýš = výška (naměřená) – výška (zadaná)</td>
</tr>
<tr>
<td>dVých</td>
<td>Rozdíl východní souřadnice na základě referenčního souřadnicového systému. dVých = východní souřadnice (naměřená) – východní souřadnice (zadaná)</td>
</tr>
</tbody>
</table>

UPOZORNĚNÍ

Vodorovné vytýčení pomocí souřadnic má stejný postup jako vytýčení vycházející ze stavebních os s tím rozdílem, že místo podélných a příčných vzdáleností se jako výsledky zobrazují resp. zadávají souřadnice resp. rozdíly souřadnic.

11.2 Svislé vytýčení (V-vytýčení)

11.2.1 Princip V-vytýčení

Pomocí V-vytýčení jsou plánová data přenesena na svislou referenční rovinu, jako např. stěnu, fasádu atd.

Tato plánová data jsou buď rozměry, které se vztahují na stavební osy na svislé referenční rovině, nebo pozice, které jsou popsány pomocí souřadnic ve svislé referenční rovině.

Plánová data resp. vytýčovací pozice mohou být zadávány jako rozměry resp. vzdálenosti pomocí souřadnic nebo používány jako data, která byla dříve přenesena z počítače.

Plánová data mohou být navíc na tachymetr přenesena z počítače jako výkres CAD a zvolena na tachymetr při vytýčování jako grafický bod resp. grafický prvek.

Proto není třeba manipulovat s velkými čísly či množinami čísel.

K typickým aplikacím patří určování polohy upevňovacích bodů u fasád, stěn s lištami, trubkami atd.

Jako zvláštní aplikace je zde ještě možnost porovnání svislé plochy s teoretickou plánovou plochou, a tedy zkontrolování resp. zdokumentování rovinnosti.

Pro spuštění aplikace "Svislé vytýčení" se v nabídce aplikací stiskne příslušné tlačítko.
Po vytvoření aplikace se zobrazí projekty resp. výběr projektů a příslušná volba stanice resp. instalace stanice.

Po instalaci stanice se spustí aplikace "Svislé vytvoření".

Podle volby stanice se nabízejí dvě možnosti určení vytvořeného bodu:

1. Vytvoření bodů pomocí stavebních os, tj. os na svislé referenční rovině.
2. Vytvoření bodů pomocí souřadnic a/nebo bodů na základě výkresu CAD.

11.2.2 V-členění pomocí stavebních os

Při V-členění pomocí stavebních os jsou osy definovány pomocí měření ke dvěma referenčním bodům při instalaci stanice.

Instalace stanice

Instalace stanice se provádí pokud je možno centrálně / středově před svislou rovinou ve vzdálenosti, která v ideálním případě umožňuje dobrou viditelnost všech bodů. Pomocí přístroje je při jeho instalaci definován nulový bod (1) systému referenčních os a směr (2) svislé referenční roviny.

Pozor

Referenční bod (1) je nejdůležitějším bodem. V tomto bodu se protíná svislá a vodorovná referenční osa ve svislé referenční rovině.
Optimální instalace resp. pozice přístroje je dosaženo v případě, že poměr vodorovné referenční délky Ln ke vzdálenosti Příč je v poměru Ln : Příč = 25 : 10 až 7 : 10, takže sevřený úhel leží v rozmezí α = 40°-100°.

UPOZORNĚNÍ
Instalace stanice je analogická instalaci stanice "Volná stanice" pomocí stavebních os s tím rozdílem, že první referenční bod určuje nulový bod systému stavebních os na svislé rovině a druhý referenční bod určuje směr svislé roviny k systému přístroje. V každém případě leží osy ve vodorovném resp. svislé směru od bodu (1).

Zadávání posunutí os
Pro posunutí systému os resp. "nulového bodu" na svislé referenční rovině jsou zadány hodnoty posunutí.
Tyto hodnoty posunutí mohou posunout nulový bod systému os v horizontálně vlevo (-) a vpravo (+), ve vertikále nahoru (+) a dolů (-) a celou rovinu vpřed (+) a vzad (-).
Posunutí os může být potřebné v případě, že nelze "nulový bod" zaměřit přímo jako první referenční bod, a proto je třeba použít stávající referenční bod, který musí být posunut na osu zadáním vzdálenosti jakožto hodnot posunutí.
Zadávání vytýčovací pozice
Zadávání hodnot vytýčení jako rozměrů ve vztahu k referenční ose definované při instalaci stanice resp. stavební ose na svislé rovině.

Zadávací hodnoty vytýčení

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>V1</th>
<th>n_{ec}</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.řf</td>
<td>1.800 m</td>
<td>1_{123}</td>
</tr>
<tr>
<td>Délka</td>
<td>5.000 m</td>
<td>1_{123}</td>
</tr>
<tr>
<td>Výška</td>
<td>6.000 m</td>
<td>1_{123}</td>
</tr>
<tr>
<td>Příč</td>
<td>0.200 m</td>
<td>1_{123}</td>
</tr>
</tbody>
</table>

Směr k vytýčovacímu bodu
Pomocí tohoto údaje se přístroj vyrovňá k vytýčovacímu bodu tak, že se přístrojem otáčí tak dlouho, až červený ukazatel směru ukazuje na "nulu". V tomto případě ukazuje některý kříž směrem k vytýčovacímu bodu.
Poté se dalekohled posouvá po vertikále tak dlouho, až nemají oba trojúhelníky žádnou výplň.

UPOZORNĚNÍ

Při výplni horního trojúhelníka posuňte dalekohled dolů. Při výplni dolního trojúhelníka posuňte dalekohled nahoru.

Osoba s naváděcím zařízením se případně může sama orientovat k záměrné linii.

Vyrovnání a měření

<table>
<thead>
<tr>
<th>v.řf</th>
<th>0.400 m</th>
<th>1_{123}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>16° 42' 03"</td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>4.479 m</td>
<td></td>
</tr>
</tbody>
</table>

Korekce vytýčení
Zobrazením korekci je nosič cíle resp. cíl směrován nahoru, dolů, vlevo, vpravo.
Pomocí měření vzdálenosti se rovněž provádí korekce vpravé a zpravé.
Po každém měření vzdálenosti jsou zobrazené korekce aktualizovány, aby se postupně blížily konečné pozici.
Výtyčení

<table>
<thead>
<tr>
<th>vřf</th>
<th>0.400 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
<td>V1</td>
</tr>
<tr>
<td>Vpravo</td>
<td>3.132 m</td>
</tr>
<tr>
<td>Nahoru</td>
<td>6.519 m</td>
</tr>
<tr>
<td>Zpět</td>
<td>1.743 m</td>
</tr>
</tbody>
</table>

Zobrazené pokyny pro směr pohybu měřeného cíle.

<table>
<thead>
<tr>
<th>Směr</th>
<th>Návody</th>
</tr>
</thead>
<tbody>
<tr>
<td>vřf</td>
<td>Nosič cíle resp. cíl se musí dále posunout ve směru k referenční rovině.</td>
</tr>
<tr>
<td>zpět</td>
<td>Nosič cíle resp. cíl se musí dále posunout ve směru od referenční roviny.</td>
</tr>
<tr>
<td>vlevo</td>
<td>Nosič cíle resp. cíl se musí v pohledu od přístroje posunout o zobrazenou hodnotu vlevo.</td>
</tr>
<tr>
<td>vpravo</td>
<td>Nosič cíle resp. cíl se musí v pohledu od přístroje posunout o zobrazenou hodnotu vpravo.</td>
</tr>
<tr>
<td>nahoru</td>
<td>Nosič cíle resp. cíl se musí v pohledu od přístroje posunout nahoru o zobrazenou hodnotu.</td>
</tr>
<tr>
<td>dolů</td>
<td>Nosič cíle resp. cíl se musí v pohledu od přístroje posunout dolů o zobrazenou hodnotu.</td>
</tr>
</tbody>
</table>

Výsledky výtyčení

Zobrazení vytvářených rozdílů v hodnotách Délka, Výška a Příč na základě posledních měření vzdálenosti a úhlů.

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>dLn</td>
<td>0.194 m</td>
</tr>
<tr>
<td>dvýš</td>
<td>-0.458 m</td>
</tr>
<tr>
<td>dPříč</td>
<td>0.191 m</td>
</tr>
</tbody>
</table>

Ovládání

<table>
<thead>
<tr>
<th>Ovládání</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zpět</td>
<td>Návrat k zadávání hodnot vytváření.</td>
</tr>
<tr>
<td>Ulož</td>
<td>Uložení hodnot vytváření a posledních rozdílů.</td>
</tr>
<tr>
<td>D. Bod</td>
<td>Zadávání dalšího bodu.</td>
</tr>
</tbody>
</table>
Ukládání dat vytyčení se stavebními osami

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>Název vytyčovacího bodu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka (zadaná)</td>
<td>Zadaná podélná vzdálenost vztažená na referenční osu.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Příč (zadaná)</td>
<td>Zadaná hodnota Příč svisle na referenční rovinu.</td>
</tr>
<tr>
<td>Délka (naměřená)</td>
<td>Naměřená podélná vzdálenost vztažená na referenční osu.</td>
</tr>
<tr>
<td>Výška (naměřená)</td>
<td>Naměřená výška.</td>
</tr>
<tr>
<td>Příč (naměřená)</td>
<td>Naměřená hodnota Příč vztažená na referenční rovinu.</td>
</tr>
</tbody>
</table>

dLn	Rozdíl v podélné hodnotě na základě referenční osy. dLn = Délka (naměřená) – Délka (zadaná)
dVýš	Rozdíl ve výšce. dVýš = Výška (naměřená) – Výška (zadaná)
dPříč	Rozdíl v příčné hodnotě na základě referenční osy. dPříč = Příč (naměřená) – Příč (zadaná)

11.2.3 V-vytyčení pomocí souřadnic

Souřadnice lze používat, jsou-li např. k dispozici referenční body jako souřadnice a rovněž body na svislé rovině jako souřadnice ve stejném systému.

Tak je tomu např. v případě, že byla svislá rovina předem zaměřena pomocí souřadnic.

Zadávání vytyčovacích bodů

Zadávání hodnot vytyčení pomocí bodových souřadnic lze provádět těmito různými způsoby:

1. Ruční zadávání bodových souřadnic.
2. Výběr bodových souřadnic ze seznamu s uloženými body.
3. Výběr bodových souřadnic z grafiky CAD s uloženými body.

Zadávání hodnot vytyčení (pomocí výkresu CAD)

Vytýčovací body se zde vybírají přímo z grafiky CAD.
Přitom je již bod uložen jako trojrozměrný nebo dvojrozměrný bod a příslušným způsobem je extrahován.
Zvolte z plánu

Výsledky vytýčení pomocí souřadnic
Zobrazení vytýčovacích rozdílů v souřadnicích na základě posledních měření vzdáleností a úhlů.

Výsledky vytýčení

Ukládání dat vytýčení se souřadnicemi

ID-bod	Název vytýčovacího bodu.
Severní souřadnice (zadaná) | Zadaná severní souřadnice vztážená na referenční souřadnicový systém.
Výška (zadaná) | Zadaná výšková hodnota.
Východní souřadnice (zadaná) | Zadaná východní souřadnice vztážená na referenční souřadnicový systém.
Severní souřadnice (naměřená) | Naměřená severní souřadnice vztážená na referenční souřadnicový systém.
Výška (naměřená) | Naměřená výška.
Východní souřadnice (naměřená) | Naměřená východní souřadnice vztážená na referenční souřadnicový systém.
dSev | Rozdíl severní souřadnice na základě referenčního souřadnicového systému. dSev = severní souřadnice (naměřená) – severní souřadnice (zadaná).
<table>
<thead>
<tr>
<th>dVýš</th>
<th>Rozdíl ve výšce. dVýš = výška (naměřená) – výška (zadaná)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dVých</td>
<td>Rozdíl východní souřadnice na základě referenčního souřadnicového systému. dVých = východní souřadnice (naměřená) – východní souřadnice (zadaná)</td>
</tr>
</tbody>
</table>

UPOZORNĚNÍ
Svislé vytýčení používá vždy trojrozměrné popisy bodů. Při vytýčení pomocí stavebních os a vytýčení pomocí souřadnic se používají rozměry délky, výšky a offsetu.

UPOZORNĚNÍ
Další údaje odpovídají údajům v předchozí kapitole.

11.3 Proměřování

11.3.1 Princip proměřování
Proměřování lze v zásadě považovat za obrázení aplikace Vodorovné vytýčení. Pomocí proměřování se srovnávají stávající pozice se svými plánovými pozicemi a odchylky jsou zobrazeny a uloženy.

Podle instalace stanice mohou být plánová data resp. srovnávací pozice používány jako rozměry resp. vzdálenosti, jako souřadnice nebo body s grafikou.

Jsou-li plánová data na tachymetr přenesena z počítače jako výkres CAD a zvolena na tachymetru při vytýcování jako grafický bod resp. grafický prvek, není třeba manipulovat s velkými čísly či množinami čísel.

K typickým aplikacím patří ověření stěn, sloupů, bednění, velkých otvorů a mnohé další. Přitom se provádí srovnání s plánovými pozicemi a rozdíly jsou přímo na místě zobrazeny resp. uloženy.

Pro spuštění aplikace "Proměřování" se v nabídce aplikace stiskně příslušné tlačítko.
Po vyvolání aplikace se zobrazí projekty resp. výběr projektů a příslušná volba stanice resp. instalace stanice.
Po instalaci stanice se spustí aplikace "Proměřování". Podle volby stanice se nabízejí dvě možnosti určení proměřovaného bodu:

1. Proměřování bodů pomocí stavebních os.
2. Proměřování bodů pomocí souřadnic a/nebo bodů na základě výkresu CAD.

11.3.2 Proměřování pomocí stavebních os
Při proměřování pomocí stavebních os se zadává hodnoty proměřování vztahují vždy na stavební osu, která byla zvolena jako referenční osa.

Zadávání pozice proměřování
Zadávání proměřovací pozice jako rozměrů ve vztahu ke stavební ose definované při instalaci stanice resp. stavební ose, na které je přístroj postaven.
Zadávané hodnoty jsou podélné a příčné vzdálenosti ve vztahu k definované stavební ose.

Zadávání dat proměřování

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>H1</th>
<th>v.rlf</th>
<th>Délka</th>
<th>Příč</th>
<th>Výš</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.400 m</td>
<td>0.000 m</td>
<td>0.000 m</td>
<td>0.000 m</td>
<td></td>
</tr>
</tbody>
</table>

UPOZORNĚNÍ
Hodnoty proměřování na stavební ose směrem vpřed a vzad od stanice přístroje jsou podélné hodnoty a hodnoty proměřování ležící vpravo a vlevo od stavební osy jsou příčné hodnoty. Vpřed a vpravo jsou pozitivní hodnoty, vzad a vlevo jsou negativní hodnoty.
Směr k proměřovacímu bodu
Pomocí tohoto údaje se přístroj vyrovnává k proměřovanému bodu tak, že se přístrojem otáčí tak dlouho, až červený ukazatel směru ukazuje na "nule" a číselný údaj pod ním stojí dostatečně přesně na "nule". V tomto případě ukazuje některý kříž směrem k proměřovacímu bodu, aby dával znamení nosiči reflektoru a identifikoval proměřovací bod.

UPOZORNĚNÍ
Další možnosti u bodů na zemi je, že nosič reflektoru se může pomocí naváděcího zařízení z velké části sám směrovat k zámerné linii.

![Výrovnání a měření](image)

Výsledky proměřování
Zobrazení rozdílů pozic v hodnotách Délka, Příč a Výška na základě posledních měření vzdáleností a úhlů.

![Výsledky proměřování](image)

UPOZORNĚNÍ
V případě, že při instalaci stanice nebyla nastavena žádná možnost pro výšky, jsou výškové údaje i všechny s nimi související údaje potlačeny.

Uložení dat proměřování se stavebními osami

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>Název vytyčovacího bodu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka (zadaná)</td>
<td>Zadaná podélná vzdálenost vztažená na stavební osu.</td>
</tr>
</tbody>
</table>
Příč (zadaná) | Zadaná příčná vzdálenost vztažená na stavební osu.
---|---
Výška (zadaná) | Zadaná výška.
Délka (naměřená) | Naměřená podélná vzdálenost vztažená na stavební osu.
Příč (naměřená) | Naměřená příčná vzdálenost vztažená na stavební osu.
Výška (naměřená) | Naměřená výška.
dPříč | Rozdíl v příčně hodnotě na základě stavební osy. dPříč = Příč (naměřená) – Příč (zadaná)
dLn | Rozdíl v podélné hodnotě na základě stavební osy. dLn = Délka (naměřená) – Délka (zadaná)
dVýš | Rozdíl ve výšce. dVýš = Výška (naměřená) – Výška (zadaná)

11.3.3 Proměřování pomocí souřadnic

Zadávání proměřovacího bodu

Zadávání pomocí bodových souřadnic lze provádět třemi různými způsoby:

- Ruční zadávání bodových souřadnic.
- Výběr bodových souřadnic ze seznamu s uloženými body.
- Výběr bodových souřadnic z grafiky CAD s uloženými body.

Zadávání dat proměřování

Aplikace > Proměření dat proměřování

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R45</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.ltf</td>
<td>0.400 m</td>
</tr>
<tr>
<td>Vých</td>
<td>0.800 m</td>
</tr>
<tr>
<td>Sev</td>
<td>0.900 m</td>
</tr>
<tr>
<td>Výš</td>
<td>0.400 m</td>
</tr>
</tbody>
</table>

Návrat k předchozímu zobrazení.

Potvrzení zadávání a pokračování se zobrazením pro vyrovnání přístroje k proměřovanému bodu.

Zadávání proměřovací pozice (pomocí výkresu CAD)

Proměřovací body se zde vybírají přímo z výkresu CAD. Příom je již bod uložen jako trojrozměrný nebo dvojrozměrný bod a příslušným způsobem je extrahován.
UPOZORNĚNÍ
Je-li instalace stanice nastavena bez výšek, jsou výškové údaje i všechny související údaje potlačeny.

UPOZORNĚNÍ
Další údaje odpovídají údajům v předchozí kapitole.

Výsledky vytyčení pomocí souřadnic
Zobrazení vytyčovacích rozdílů v souřadnicích na základě posledních měření vzdáleností a úhlů.

Ukládání dat vytyčení se souřadnicemi

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Název vytyčovacího bodu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severní souřadnice (zadaná)</td>
<td>Zadaná severní souřadnice vztažená na referenční souřadnicový systém.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Východní souřadnice (zadaná)</td>
<td>Zadaná východní souřadnice vztažená na referenční souřadnicový systém.</td>
</tr>
<tr>
<td>Severní souřadnice (naměřená)</td>
<td>Naměřená severní souřadnice vztažená na referenční souřadnicový systém.</td>
</tr>
<tr>
<td>Výška (naměřená)</td>
<td>Naměřená výška.</td>
</tr>
<tr>
<td>Východní souřadnice (naměřená)</td>
<td>Naměřená východní souřadnice vztažená na referenční souřadnicový systém.</td>
</tr>
<tr>
<td>dSev</td>
<td>Rozdíl severní souřadnice na základě referenčního souřadnicového systému. dSev = severní souřadnice (naměřená) – severní souřadnice (zadaná)</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdíl ve výšce. dVýš = výška (naměřená) – výška (zadaná)</td>
</tr>
<tr>
<td>dVých</td>
<td>Rozdíl východní souřadnice na základě referenčního souřadnicového systému. dVých = východní souřadnice (naměřená) – východní souřadnice (zadaná)</td>
</tr>
</tbody>
</table>

UPOZORNĚNÍ

Proměřování pomocí souřadnic má stejný postup jako proměřování vycházející ze stavebních os s tím rozdílem, že místo podélných a příčných vzdáleností se jako výsledky zobrazují resp. zadávají souřadnice resp. rozdíly souřadnic.

11.4 Měření rozpětí

11.4.1 Princip měření rozpětí

Pomocí aplikace Měření rozpětí se měří dva body volně ležící v prostoru, aby se zjistila vodorovná vzdálenost, šikmá vzdálenost, výškový rozdíl a sklon mezi těmito body.

K určení sklonu pomocí měření rozpětí

<table>
<thead>
<tr>
<th>Nabídka aplikace</th>
<th>08/06/11 15:53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vytyčení H</td>
<td>Proměř</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Zpět</td>
<td>Další</td>
</tr>
</tbody>
</table>

Návrat k předchozímu zobrazení.

Pokračování k výběru dalších aplikací.

Vyvolání aplikace Měření rozpětí.

Po vyvolání aplikace se zobrazí údaje o projektech resp. výběr projektů.

Nastavení stanice zde není nutné.

Měření rozpětí lze provádět dvěma různými způsoby:

1. Výsledky mezi prvními a všemi dalšími měřenými body.
2. Výsledky mezi dvěma měřenými body.
1. možnost – vztažení k základnímu bodu

Příklad s body na zemi
Po zaměření prvního bodu se všechny další měřené body vztahují k prvnímu bodu.

2. možnost – vztažení mezi prvním a druhým bodem

Příklad s body na zemi
Měření obou prvních bodů.
Po zjištění výsledku zvolte novou linii a nový základní bod a zaměřte nový druhý bod.
11.5 Měření a zaznamenání
11.5.1 Princip měření a zaznamenání
Pomocí měření a zaznamenání jsou měřeny body, jejichž pozice není známa.
Měření vzdáleností lze provádět pomocí laseru, je-li možné zaměřit laserový paprsek přímo na povrch.
Pozice bodů jsou podle instalace stanice vypočítány buď pomocí rozměrů stavebních os, nebo pomocí souřadnic a/nebo pomocí výšek.
Naměřené body lze opatřit různými označenímí a uložit do paměti.

UPOZORNĚNÍ
S každým uložením se název bodu automaticky zvýší o hodnotu "1".

Uložená bodová data lze přenést na počítač, zobrazit v CAD či podobném systému a dále zpracovat nebo pro účely dokumentace vytisknout a archivovat.

Pro spuštění aplikace Měření & zaznamenání se v nabídce aplikací stiskne příslušné tlačítko.

Nabídka aplikace

<table>
<thead>
<tr>
<th>Měř & Zazn</th>
<th>Plocha</th>
<th>V vyrovnání</th>
<th>Nepř. výška</th>
</tr>
</thead>
</table>

Návrat k předchozímu zobrazení.

Pokračování k výběru dalších aplikací.

Vyvolání aplikace Měření & zaznamenání.

Po vyvolání aplikace se zobrazí projekty resp. výběr projektů a příslušná volba stanice resp. instalace stanice.

Po instalaci stanice se spustí aplikace "Měření & zaznamenání".

Podle volby instalace stanice se nabízí dvě možnosti určení bodového systému:

1. Pozice bodu v závislosti na stavební ose
2. Pozice bodu v závislosti na souřadnicovém systému

11.5.2 Měření a zaznamenání pomocí stavebních os

Pozice měřených bodů se vztahují na stavební osu, která byla použita jako referenční.

Pozice jsou popsány podělnou vzdáleností na stavební ose a pravoúhlou příčnou vzdáleností.
Pozice měřených bodů se vztahují na stejný souřadnicový systém, ve kterém je provedena instalace stanice, a jsou popisovány, resp. zobrazovány pomocí souřadnicových hodnot Vých nebo Y, Sev nebo X a Výš pro výšku.
P0 je pozice přístroje po instalaci.
U cílů se měří úhly a vzdálenosti a příslušné souřadnice jsou vypočítány, resp. uloženy.

Měření bodů pomocí souřadnic
Následující zobrazení lze přepínat mezi úhlovým a souřadnicovým zobrazením.

<table>
<thead>
<tr>
<th>Zruš</th>
<th>Přerušení a návrat k úvodní nabídce.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M & Z</td>
<td>Spuštění měření vč. ukládání dat. ID bodu (označení) se zvýší o "1".</td>
</tr>
<tr>
<td>Měř</td>
<td>Měření vzdálenosti.</td>
</tr>
<tr>
<td>L & P</td>
<td>Zobrazení souřadnic.</td>
</tr>
<tr>
<td>Úhel</td>
<td>Přepnutí na zobrazení úhlových hodnot.</td>
</tr>
<tr>
<td>Záz</td>
<td>Uložit hodnoty zobrazené na displeji pro vodorovnou vzdálenost, vodorovný úhel a svislý úhel.</td>
</tr>
</tbody>
</table>

UPOZORNĚNÍ
Je-li instalace stanice nastavena bez výšek, jsou výškové údaje i všechny související údaje potlačeny.

UPOZORNĚNÍ
Změřením vzdálenosti se zafixuje hodnota pro vodorovnou vzdálenost. Pokud se pak dalekohled ještě pohne, změní se jen hodnoty pro vodorovný a svislý úhel.

Někdy je těžké nebo dokonce nemožné změřit některý bod přesně (např. střed sloupce nebo stromu). V tom případě změřte vzdálenost od příčně ležícího bodu.

1. Když jste zaměřili příčně ležící bod, změřte vzdálenost k tomuto bodu.
2. Otočte dalekohled a zaměřte na vlastní měřený, abyste změřili příslušný úhel.
3. Uložte změřenou vzdálenost k příčně ležícímu bodu a úhel k vlastnímu měřenému bodu.

Ukládání dat Měření a zaznamenání

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Název naměřeného bodu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vých(y), Přič</td>
<td>Naměřená východní souřadnice nebo příčná vzdálenost ke stavební ose</td>
</tr>
</tbody>
</table>
11.6 Svislé vyrovnání

11.6.1 Princip svislého vyrovnání
Pomocí svislého vyrovnání mohou být prvky v prostoru svisle uspořádány nebo svisle přeneseny. Zde je třeba zmínit především výhody pro svislé uspořádání bednění na sloupech nebo možnost vytýčení nebo ověření svisle nad sebou umístěných bodů přes více pater.

UPOZORNĚNÍ
V zásadě se ověřuje, zda jsou dva měřené body umístěny prostorově svisle nad sebou.

UPOZORNĚNÍ
Měření lze podle potřeby aplikace provádět s nebo bez reflektorové tyče.

Nabídka aplikace

Měř & Zazn | Plocha | V vyrovnaní | Nepř. výška

Zpět | Další

Po vyvolání aplikace se zobrazí údaje o projektech resp. výběr projektů. Nastavení stanice zde není nutné.

Měření k 1. referenčnímu bodu
K 1. referenčnímu bodu se provádí měření úhlu a vzdálenosti. Vzdálenost lze měřit přímo k bodu nebo pomocí reflektorové tyče, podle přístupnosti k 1. referenčnímu bodu.
Měření k dalším bodům
Měření k dalším bodům se vždy provádí pomocí měření úhlů a vzdáleností.
Po druhém a každém dalším měření jsou hodnoty korekci ve srovnání s 1. referenčním bodem v dolním zobrazení aktualizovány.

11.7 Měření plochy

11.7.1 Princip měření plochy

Přístroj určuje příslušnou vodorovnou nebo svislou plochu až z 99 po sobě následujících změřených bodů.
Body lze měřit v pořadí ve směru nebo proti směru hodinových ručiček.
UPOZORNĚNÍ
Body je třeba měřit tak, aby se spojovací linie mezi měřenými body nekřížily, jinak je plocha špatně vypočítána.

Po vyvolání aplikace vyberte plochu ve vodorovné nebo svislé rovině.

UPOZORNĚNÍ
Nastavení stanice zde není nutné.

UPOZORNĚNÍ
Vodorovná plocha se vypočítá tím, že se změřené body promítnou do vodorovné roviny.

UPOZORNĚNÍ
Svislá plocha se vypočítá promítnutím změřených bodů do svislé roviny. Svislá rovina je definována prvními dvěma změřenými body.

Měření pro určení plochy
Body je třeba měřit v takovém pořadí, aby obklopovaly plochu.
Při výpočtu je plocha uzavřena vždy od posledního k prvnímu měřenému bodu.
Body je třeba měřit tak, aby se spojovací linie mezi měřenými body nekřížily, jinak je plocha špatně vypočítána.

Výsledky
Výsledky jsou uloženy ve vnitřní paměti a pomocí softwaru Hilti PROFIS Layout mohou být zobrazeny, resp. vytištěny na počítači.
11.8 Nepřímé měření výšek

11.8.1 Princip nepřímého měření výšky
Pomocí nepřímého měření výšky se určují výškové rozdíly nepřístupných míst resp. nepřístupných bodů, není-li možné přímé měření jejich vzdálenosti. Nepřímým měřením výšky lze určit téměř libovolné výšky nebo hloubky, např. výšky vrcholků jeřábů, hloubky stavebních jam a mnoho jiného.

UPOZORNĚNÍ
Je bezpodmínečně třeba zajistit, aby referenční bod a další nepřístupné body ležely ve vodorovné rovině.

Po vyvolání aplikace se zobrazí údaje o projektech resp. výběr projektů.
Nastavení stanice zde není nutné.
11.8.2 Nepřímé určení výšky

Měření k 1. referenčnímu bodu
K 1. referenčnímu bodu se provádí měření úhlu a vzdálenosti.
Vzdálenost lze měřit přímo k bodu nebo pomocí reflektorové tyče, podle přístupnosti k 1. referenčnímu bodu.

<table>
<thead>
<tr>
<th>Změřte Bod 1</th>
<th>08/05/11 15:28</th>
<th>08/05/11 15:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.řf</td>
<td>0.400 m</td>
<td></td>
</tr>
<tr>
<td>Vů</td>
<td>72° 51' 38"</td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>4.379 m</td>
<td></td>
</tr>
</tbody>
</table>

Měření k dalším bodům
Měření k dalším bodům se provádí pouze pomocí měření svislých úhlů. Výskový rozdíl k 1. referenčnímu bodu se zobrazuje kontinuálně.

<table>
<thead>
<tr>
<th>Změřte Bod 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vů</td>
<td>52° 47' 19"</td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>4.379 m</td>
<td></td>
</tr>
<tr>
<td>dVýš</td>
<td>2.375 m</td>
<td></td>
</tr>
</tbody>
</table>

11.9 Určení bodu ve vztahu k ose

11.9.1 Princ "Bod vůči ose"

Použitím principu "Bod vůči ose" lze určit polohu bodu (např. referenčního bodu) ve vztahu k ose. Kromě toho lze určovat body paralelně, pravoúhle nebo v jakémkoli požadovaném úhlu a dále na existující ose. Tato aplikace je zajímavá především tehy, pokud mají být umístěny hřebíky na výtyčovacích lavičkách pro označení paralelních os na stavbě.

Aplikace sestává ze dvou kroků:

1. Definování osy.
2. Výběr nebo měření referenčního bodu.

Pokud je stanice nainstalovaná v režimu souřadnic/grafiky, lze osu a referenční bod určit přímo z paměti.
Pokud stanice ještě není nainstalovaná, musí se osa určit měřením počátečního a koncového bodu osy. Referenční bod se určuje také přímo měřením.
11.9.2 Určení osy

Změření nebo výběr prvního bodu osy

<table>
<thead>
<tr>
<th>Změřte Ref Pt 1</th>
<th>05/07/11 09:56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
<td>LinBod1 H_{b1}</td>
</tr>
<tr>
<td>Hů</td>
<td>76° 01' 45"</td>
</tr>
<tr>
<td>Vů</td>
<td>76° 49' 45"</td>
</tr>
<tr>
<td>Hv</td>
<td>4.380 m</td>
</tr>
<tr>
<td>Zpět</td>
<td>Měř</td>
</tr>
</tbody>
</table>

Nově pojmenovat bod referenční osy nebo vybrat z paměti.

Návrat k orientačnímu měření.

Spuštění měření k bodu.

Přejít na další krok.

Změření nebo výběr druhého bodu osy

<table>
<thead>
<tr>
<th>Změřte Ref Pt 2</th>
<th>05/07/11 09:56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
<td>LinBod2 H_{b2}</td>
</tr>
<tr>
<td>Hů</td>
<td>87° 18' 10"</td>
</tr>
<tr>
<td>Vů</td>
<td>76° 49' 55"</td>
</tr>
<tr>
<td>Hv</td>
<td>---</td>
</tr>
<tr>
<td>Zpět</td>
<td>Měř</td>
</tr>
</tbody>
</table>

Nově pojmenovat bod referenční osy nebo vybrat z paměti.

Zpět na měření prvního bodu.

Spuštění měření k bodu.

Přejít na další krok.

Posunutí osy

Počáteční bod osy lze posunout, aby bylo možné použít jinou referenci jako počátek souřadnicového systému. Pokud je zadaná hodnota kladná, posune se osa dopředu, je-li záporná, pak dozadu. Počáteční bod se v případě kladné hodnoty posune doprava, v případě záporné hodnoty doleva.

Posunutí ref. linie

<table>
<thead>
<tr>
<th>Posunutí ref. linie</th>
<th>05/07/11 09:56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka</td>
<td>0.000 m</td>
</tr>
<tr>
<td>Příč</td>
<td>0.000 m</td>
</tr>
<tr>
<td>Zpět</td>
<td>Otáčet</td>
</tr>
</tbody>
</table>

Návrat k předchozímu zobrazení.

Ručné zadat posunutí osy.

Spuštění měření k bodu. Zobrazí se naměřené hodnoty osy, vzdálenost a výška. Popis hodnot může být individuální.

Otočit osu.

Přejít na další krok.
Otočení osy
Směr osy lze otočit kolem počátečního bodu. Při zadání kladných hodnot se osa otočí ve směru hodinových ručiček, v případě záporných hodnot proti směru hodinových ručiček.

11.9.3 Kontrola bodů ve vztahu k ose
Měření nebo výběr referenčního bodu

12. Data a jejich správa

12.1 Úvod
Tachymetry Hilti ukládají data především ve vnitřní paměti. Data jsou naměřené hodnoty, tj. hodnoty úhlů a vzdáleností, v závislosti na nastaveních resp. aplikaci. Hodnoty vložené na stavební osy, jako jsou hodnoty Délka a Příč nebo souřadnice. Pomocí počítačového softwaru lze data sdílet s jinými systémy. V zásadě jsou všechna data tachymetru bodová data, s výjimkou grafických dat, u kterých jsou body svázány s grafikou. Pro výběr resp. použití jsou zde k dispozici příslušné body, nikoli grafika, která má funkci doplňkových informací.

12.2 Bodová data
Bodovými daty mohou být nově měřené body nebo stávající body. Tachymetr měří především úhly a vzdálenosti.
Pomocí instalace stanice jsou vypočítány souřadnice zářífiného bodu.
Každý bod, který je zaměřen nitkovým křížem nebo laserovým ukazatelem a ke kterému je měřena vzdálenost, je tak vypočítán jako **trojrozměrný bod v systému tachymetru**.
Tento trojrozměrný bod je jednoznačně určen označením bodu.
Každý bod je zadan s označením bodu, souřadnicí Y, souřadnicí X a přip. výškou.
Dále body jsou definovány svými souřadnicemi nebo body s grafickými prvky.

12.2.1 Body jako měřicí body

Měřicí data jsou měřené body, které byly vytvořeny a uloženy v příslušných aplikacích na tachymetru jako souřadnicové body, jako např. v H-vytyčení, V-vytyčení, Proměřování a Měření a zaznamenání.
Měřicí body existují v dané stanici pouze jednou.
Je-li pro měřicí bod použit opět stejný název, může být stávající pod přepsán nebo pojmenován jiným názvem bodu.
Měřicí body nelze upravovat.

12.2.2 Body jako souřadnicové body

Při práci v souřadnicovém systému jsou všechny pozice zpravidla určeny názvem bodu a souřadnicemi, pro popis pozice bodu je příjemnějším nutný název bodu a dvě vodorovné souřadnicové hodnoty X, Y nebo E, N atd.
Výška je obecně na souřadnicových hodnotách XY nezávislá.
Tachymetr používá body jako souřadnicové body, tzv. kontrolní nebo pevné body a měřicí body se souřadnicemi.
Pevné body jsou body s danými souřadnicemi, které byly ručně zadány na tachymetru nebo přeneseny pomocí softwaru Hilti PROFIS Layout z velkokapacitní paměti USB resp. přímo pomocí datového kabelu USB.
Tytto pevné body mohou být rovněž vytyčovací body. Kontrolní bod (pevný bod) existuje v každém projektu jen jednou.
Kontrolní resp. pevné body lze na tachymetru upravovat, není-li bod spojen s žádným grafickým prvkem.

12.2.3 Body s grafickými prvky

Na přístroji lze pomocí softwaru Hilti PROFIS Layout uložit grafická data z prostředí CAD, zobrazit je a vybírat.
Systém Hilti umožňuje různými způsoby vytvářet body a grafické prvky pomocí softwaru Hilti PROFIS Layout a přenášet je na tachymetr resp. je zde používat.
Body s připojenými grafickými prvky nelze upravovat na tachymetru, ale na počítači se softwarem Hilti PROFIS Layout.

12.3 Tvorba bodových dat

12.3.1 S tachymetrem

Každé měření vytváří naměřený datový záznam resp. měřicí bod. Měřicí body jsou definovány buď jen jako hodnoty úhlů a vzdáleností, názvy bodů s hodnotami úhlů a vzdáleností nebo jako názvy bodů se souřadnicemi.

12.3.2 Se softwarem Hilti PROFIS Layout

1. **Vytvoření bodu z plánových rozměrů konstrukcí lineí, křivek a zobrazení pomocí grafických prvků**

V programu "Hilti PROFIS Layout" lze z plánových měr resp. rozměrů ve stavebním plánu generovat grafiku, která takřka kopíruje stavební plán.
V počítačovém softwaru je proto plán graficky nově vytvořen ve zjednodušené podobě, takže vzniknou linie, křivky atd. jako body s grafickým uložením.
Zde lze rovněž vytvářet zvláštní křivky, z nichž mohou být vytvářeny body např. v pravidelných odstupcích.

2. Vytvoření bodů z importu CAD a dat kompatibilních s prostředky CAD
Pomocí softwaru "Hilti PROFIS Layout" jsou data CAD přímo přenesena ve formátech DXF nebo AutoCAD – kompatibilní formát DWG – na počítač.
Z grafických dat, jako např. linií, křivek atd., jsou vytvořeny body.
V programu Hilti PROFIS Layout lze z grafických prvků CAD vytvářet bodová data koncových bodů, průsečíků linií, středu vzdáleností, kruhových bodů atd.
K takto vytvořeným bodovým datům jsou viditelně uloženy původní grafické prvky z CAD.
Data obsažená v CAD mohou být k dispozici na různých "vrstvách". V programu "Hilti PROFIS Layout" jsou tato data při přenesení na přístroj společně uložena na "vrstvu".

UPOZORNĚNÍ
Především je třeba dbát na to, že při organizaci dat na počítači je před přenesením na přístroj zohledněna konečná požadovaná hustota bodů.

3. Import bodových dat z tabulkových nebo textových souborů
V programu Hilti PROFIS Layout lze bodová data z textových nebo XML souborů importovat, zpracovávat a přenášet na tachymetr.

12.4 Datová paměť

12.4.1 Vnitřní paměť tachymetru
Tachymetr Hilti ukládá v aplikacích data, která jsou příslušným způsobem organizována.
Bodová resp. měřicí data jsou v systému organizována pomocí projektů a stanic přístroje.

Projekt
K projektu patří jedený blok kontrolních bodů (pevných bodů) resp. vytyčovacích bodů.
K jednomu projektu může patřit více stanic.

Stanice přístroje plus orientace (podle potřeby)
Ke stanici vždy patří orientace.
Ke stanici patří měřicí body s jednoznačným označením bodů.

UPOZORNĚNÍ
Projekt lze považovat za určitý soubor.

12.4.2 Velkokapacitní paměť USB
Velkokapacitní paměť USB slouží sdílení dat mezi počítačem a tachymetrem. Nepoužívá se jako dodatečná datová paměť.

UPOZORNĚNÍ
Jako aktivní datová paměť se vždy používá vnitřní paměť tachymetru.
13. Správce dat tachymetru

13.1 Přehled
Správce dat umožňuje přístup k vnitřním uloženým datům v tachymetru. Správce dat nabízí tyto možnosti:

- Vytvoření, smazání a kopírování nového projektu.
- Zadávání, upravování a mazání kontrolních bodů resp. pevných bodů souřadnic.
- Zobrazení a smazání měřicích bodů.

UPOZORNĚNÍ
Kontrolní body resp. pevné body lze pouze upravovat, nejsou-li spojeny s grafikou.

13.2 Výběr projektu
Po spuštění správce dat se zobrazí seznam stávajících projektů ve vnitřní paměti. Aby byly funkce pro body a měřicí body aktivní, je nejprve třeba vybrat stávající projekt.
13.2.1 Pevné body (kontrolní, resp. vytyčovací body)

Po výběru příslušného projektu mohou být při výběru možnosti Body zadávány body se souřadnicemi nebo upravovány či mazány stávající body se souřadnicemi.

13.2.1.1 Zadávání bodů pomocí souřadnic

Ruční zadávání názvu bodu a souřadnic.
Pokud již název bodu existuje, objeví se příslušná výstraha pro změnu názvu bodu.

<table>
<thead>
<tr>
<th>Zvolte ruční zadávání</th>
<th>Bod ID</th>
<th>Vých</th>
<th>Sev</th>
<th>Výš</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23</td>
<td>18.000 m</td>
<td>21.000 m</td>
<td>2.000 m</td>
</tr>
</tbody>
</table>

UPOZORNĚNÍ

Při aktuálně používané funkci je příslušné tlačítko zobrazeno "šedé".

13.2.1.2 Výběr bodů ze seznamu nebo grafického zobrazení

Následně se zobrazí výběr bodů ze seznamu a grafiky.
13.2.1.3 Smazání a zpracování bodů

Po výběru a potvrzení bodů lze bod v následujícím zobrazení smazat resp. změnit. Při změně lze měnit pouze souřadnice a výšku, nikoli název bodu. Pro změnu názvu bodu je třeba zadat bod s novým názvem.

UPOZORNĚNÍ

Body s připojenou grafikou nelze ani měnit, ani smazat. Tato možnost je k dispozici pouze na počítači se softwarom Hilti PROFIS Layout.
13.2.2 Měřicí body

Po výběru příslušného projektu mohu být zobrazeny stanice s příslušnými měřicími body. Přítom lze stanici se všemi příslušnými měřicími daty smazat. K tomu je při výběru projektu třeba zvolit možnost Měřicí body.

13.2.2.1 Výběr stanice

Níže je zobrazen výběr stanice pomocí ručního zadávání názvu stanice, ze seznamu a grafiky.

<table>
<thead>
<tr>
<th>Zvole ze seznamu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

| Zpět | Plán | Seznar | Man | OK |

<table>
<thead>
<tr>
<th>Zvole z plánu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

| Zpět | Plán | Seznar | Man | OK |

13.2.2.2 Výběr měřicího bodu

Po výběru stanice lze ručně zadat měřicí bod k vyhledání nebo jej zvolit ze seznamu měřicích bodů nebo grafického zobrazení.
13.2.2.3 Smazání a zobrazení měřicích bodů
Po výběru měřicího bodu lze zobrazit naměřené hodnoty a souřadnice a smazat měřicí bod.

13.3 Smazání projektu
Před smazáním projektu se objeví příslušné potvrzení s možností dalšího prohlížení podrobností projektu.

UPOZORNĚNÍ
Je-li projekt smazán, jsou všechna data, která s projektem souvisejí, ztracena.
13.4 Nové vytvoření projektu
Při zadávání nového projektu je třeba dbát na to, že název projektu je v paměti uložen pouze jednou.

Nový název projektu
Aplikace Správce dat Projekty
Projekt ---
Datum 09/06/11
Čas 08:28
Zruš OK

Zadávání názvu projektu.
Přerušení a návrat k výběru projektu.
Potvrzení a převzetí zadávání.

13.5 Kopírování projektu
Při kopírování projektu se nabízejí různé možnosti:

- Z vnitřní do vnitřní paměti.
- Z vnitřní paměti do velkokapacitní paměti USB.
- Z velkokapacitní paměti USB do vnitřní paměti.

Při kopírování lze změnit název projektu v cílové paměti.
Tím je možné projekt při kopírování přejmenovat a projektová data duplikovat.

Zkopírujte projekt
Aplikace Správce dat Projekty
Zdroj paměť Vnitřní paměť
Cíl paměť Vnitřní paměť
Projekt Layout_New_Bldg
Nový Proj ---
Zruš OK

Volba zdrojové paměti.
Volba cílové paměti.
Přerušení a návrat k předchozímu zobrazení.
Potvrzení a převzetí zadávání.

UPOZORNĚNÍ
Je-li již název projektu v cílové paměti uložen, je třeba zvolit jiný název nebo smazat stávající projekt.
14. Počítačové sdílení dat

14.1 Úvod

Sdílení dat mezi tachymetrem a počítačem probíhá vždy ve spojení s počítačovým programem Hilti PROFIS Layout.
Přenášená data jsou binární data a bez těchto programů je nelze číst.
Sdílení dat lze provádět buď pomocí dodaného datového kabelu USB, nebo pomocí velkokapacitní paměti USB.

14.2 Hilti PROFIS Layout

Data se v zásadě sdílí jako úplný projekt, tj. mezi tachymetrem Hilti a softwarem Hilti PROFIS Layout se sdílí všechna data, která patří k projektu.
Projekt sám může obsahovat kontrolní resp. pevné body s nebo bez grafiky nebo v kombinaci, tj. s kontrolními resp. pevnými body a měřicími body (měřicími daty), včetně výsledků z příslušných aplikací.

14.2.1 Datové typy

Bodová data (kontrolní body resp. vytvářivací body)

Kontrolní body jsou rovněž zároveň vytvářivací body a lze je opatřit grafickými prvky pro usnadnění identifikace nebo pro náčrt situace.
Jsou-li tyto body přenášeny z počítače na tachymetr s grafickými prvky, jsou tato data na tachymetru zobrazena s grafikou.
Jsou-li na tachymetru později ručně zadávány kontrolní resp. vytvářivací body, nelze k nim na tachymetru přiřadit nebo připojit žádné grafické prvky.

Měřicí data

Měřicí body resp. měřicí data a výsledky aplikací se zásadně přenáší pouze z tachymetru do softwaru Hilti PROFIS Layout.
Přenášené měřicí body lze přenášet jako bodová data v textovém formátu s prázdnými znaky, oddělené čárkou (CSV) nebo v jiných formátech jako DXF a AutoCAD DWG a dále zpracovávat na jiných systémech.
Výsledky aplikací, jako např. vytvářivací rozdíly, výsledky měření ploch atd., lze v programu Hilti PROFIS Layout exportovat v textovém formátu jako "zprávy".

** Shrnutí**

Mezi tachymetrem a softwarem Hilti PROFIS Layout lze oboustranně sdílet následující data.

Z tachymetru do Hilti Profis Layout:
Měřicí data: Název bodu, úhel a vzdálenost.
Bodová data: Název bodu, souřadnice + výška.

Z Hilti Profis Layout do tachymetr:
Bodová data: Název bodu, souřadnice + výška.
Grafická data: Souřadnice s grafickými prvky.

UPOZORNĚNÍ
Sdílení mezi tachymetrem a jinými počítačovými systémy není přímo možné, pouze prostřednictvím softwaru Hilti PROFIS Layout.

14.2.2 Výstup dat (export) v programu Hilti PROFIS Layout
V následujících aplikacích jsou data uložena a pomocí softwaru Hilti PROFIS Layout mohou být vyexportována v různých formátech:
1. Vodorovné vytýčení
2. Svislé vytýčení
3. Proměřování
4. Měření a zaznamenání
5. Měření ploch (výsledek měření ploch)

Výstupní data
Software Hilti PROFIS Layout načte uložená data z celé stanice a extrahuje následující data.
1. Název bodu, vodorovný úhel, svislý úhel, vzdálenost, výška reflektoru, výška přístroje
2. Název bodu, souřadnice Vých(Y), souřadnice Sev(X), výška
3. Výsledky aplikace jako vytýcovací rozdíly a měření ploch

Výstupní formáty

<table>
<thead>
<tr>
<th>Formát CSV</th>
<th>Jednotlivá data oddělená čárkou.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textový formát</td>
<td>Odstupy vyplněné prázdlnými znaky, takže jsou jednotlivá data uvedena ve sloupcích.</td>
</tr>
<tr>
<td>Formát DXF</td>
<td>Textový výměnný formát kompatibilní s prostředky CAD.</td>
</tr>
<tr>
<td>Formát DWG</td>
<td>Binární datový formát kompatibilní s prostředky AutoCad.</td>
</tr>
</tbody>
</table>

14.2.3 Vstup dat (import) v programu Hilti PROFIS Layout

Vstupní data
Pomocí softwaru Hilti PROFIS Layout lze čist, měnit a na tachymetr přímo pomocí kabelu nebo velkokapacitní paměti USB přenášet následující data:
1. Názvy bodů (pevné body) se souřadnicemi a výškami.
2. Polylínie (linie, křivky) z jiných systémů

Vstupní formáty

<table>
<thead>
<tr>
<th>Formát CSV</th>
<th>Data oddělená čárkou.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formát txt</td>
<td>Data oddělená prázdlnými znaky.</td>
</tr>
<tr>
<td>Textový formát</td>
<td>Odstupy vyplněné prázdlnými znaky, takže jsou jednotlivá data uvedena ve sloupcích.</td>
</tr>
</tbody>
</table>
Formát DXF | Výkres CAD s liniemi a oblouky jako obecný výměnný formát CAD.
---|---
Formát DWG | Výkres CAD s liniemi a oblouky jako formát kompatibilní s AutoCAD.

15. Datová připojka s RS 232
Tachymetr Hilti má datové rozhraní RS 232, na které lze připojit zařízení pro registraci dat.
Pro další informace se prosím obraťte na svého poradce Hilti.

16. Kalibrace a seřízení

16.1 Kalibrace v terénu
Přístroj je při expedici z výroby správně nastavený.
Na základě kolisání teploty, pohybů při prepravě a stárnutí je možné, že se nastavené hodnoty přístroje časem změní.
Proto je přístroj vybavený funkcí pro kontrolu nastavených hodnot a případnou opravu pomocí kalibrace v terénu.
Za tímto účelem se přístroj nainstaluje pomocí kvalitního stativu a použije se dobře viditelný, přesně identifikovatelný cíl v rozměru ±3 stupňů vůči horizontále ve vzdálenosti cca 70–120 m.
Poté se provede měření v polozle dalekohledu 1 a polozle dalekohledu 2.

UPOZORNĚNÍ
Tento postup je interaktivně podporován na displeji, takže je třeba pouze dodržovat pokyny.

Tato aplikace kalibruje a seřizuje tyto tři osy přístroje:
- Záněrná osa
- Vů kolim
- Dvouosý kompenzátor (obě osy)

16.2 Provedení kalibrace v terénu

UPOZORNĚNÍ
Přístroj obsluhujte opatrně, aby se nepohyboval.

UPOZORNĚNÍ
Při kalibraci v terénu je nutná zvláštní pečlivost a přesná práce. Při nepřesném zaměření nebo otřesech přístroje mohou být zjištěny chybné kalibrační hodnoty, které by následně vedly k chybným měřením.

UPOZORNĚNÍ
V případě pochybností odevzdejte přístroj ke kontrole v servisu Hilti.

1. Instalujte přístroj bezpečně na dobrém stativu.
2. V nabídce aplikace zvolte možnost Konfigurace.

Kalibrační hodnoty

| Vů kolím | -0° 00' 06"
| Cílová osa | -0° 00' 02"

4. Spusťte kalibrační postup nebo potvrďte zobrazené kalibrační hodnoty a další kalibraci neprovádějte.

5. Zvolte přesně rozpoznatelný cíl v rozmezí ± 3 stupňů k horizontále ve vzdálenosti cca 70-120 m a opatrně jej zaměřte.

UPOZORNĚNÍ Vyhledejte vhodný cíl, který lze v daných podmínkách dobře zaměřit.
UPOZORNĚNÍ Není-li přístroj v 1. poloze dalekohledu, objeví se na displeji příslušná výzva.
Měření v poloze 1
Aplikace > Konfigurace > Kalibrace

Kalibrace přístroje
Zaměřte cíl v rozsahu ±3° k horizontále.

Hú 351° 38' 25"
Vú 88° 11' 23"

Zpět Měř

6. Proveďte měření v poloze dalekohledu 1.
Poté se objeví výzva ke změně do 2. polohy dalekohledu.

7. Otočte přístroj opatrně do 2. polohy dalekohledu.

Měření v poloze 2
Aplikace > Konfigurace > Kalibrace

Kalibrace přístroje
Přesně zaměřte stejný cíl.

dHú 0° 00' 01"
dVú 0° 00' 01"

Zpět Měř

8. Zaměřte znovu stejný cíl v rozmezí ±3° k horizontále.

UPOZORNĚNÍ Na displeji se objevují pomocné pokyny, tj. zobrazují se rozdíly pro svislý
a vodorovný kruh. Tyto pokyny slouží výhradně k usnadnění vyhledání cíle.

UPOZORNĚNÍ Je-li cíl zaměřen ve druhé poloze dalekohledu, měly by být hodnoty přibližně
"nula" resp. odchylovat se pouze o několik vteřin.

Po úspěšných měřeních v obou polohách dalekohledu se zobrazí nové a staré hodnoty
nastavení pro Vú kolim a záměrnou osu.
Naslovte nové hodnoty

<table>
<thead>
<tr>
<th>Výstup redukování</th>
<th>Výstup kalibrace</th>
<th>Přesunování</th>
<th>Čidlo</th>
<th>Přesunování</th>
<th>Přesunování</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vů kolim (starý)</td>
<td>-0° 00' 06"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vů kolim (nový)</td>
<td>-0° 00' 06"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Čidlo (staré)</td>
<td>-0° 00' 02"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Čidlo (nové)</td>
<td>0° 00' 02"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Potvrďte a uložte nové kalibrační hodnoty.

UPOZORNĚNÍ Pomocí předchozího kalibračního postupu pro Vů kolim a záměrnou osu byly rovněž zjištěny nové hodnoty nastavení pro dvouosý kompenzátor.
Při převzetí nových kalibračních hodnot jsou rovněž převzaty nové hodnoty nastavení pro kompenzátor.

16.3 Kalibrační servis Hilti

Aby bylo možno zajistit spolehlivost podle požadavků norem a zákonů, doporučujeme přístroj nechávat pravidelně kontrolovat v kalibračním servisu Hilti.

Kalibrační servis Hilti je vám k dispozici stále; doporučujeme ale servis provádět minimálně jednou za rok.

V rámci kalibračního servisu Hilti se vydává potvrzení, že specifikace zkoušeného přístroje ke dni kontroly odpovídají technickým údajům v návodu k obsluze.

V případě odchylek od údajů výrobce se použité měřicí přístroje znovu seřídí.

Po rektifikaci a kontrole se na přístroj umístí kalibrační štítek a formou certifikátu o kalibraci se potvrdí, že přístroj pracuje v rámci tolerancí uvedených výrobkem.

Kalibrační certifikáty jsou nutné pro podněty, které jsou certifikovány podle normy ISO 900X.

Nejlépe zastoupení Hilti vám ochotně poskytne další informace.

17. Čistění a údržba

UPOZORNĚNÍ
Poškozené díly nechte vyměnit v servisu firmy Hilti.

17.1 Čistění a sušení

Ze skla vyfoukejte prach.

POZOR
Nedotýkejte se skla prsty.

Přístroj čistěte pouze čistým, měkkým hadrem. V případě potřeby ho navlhčete čistým alkoholem nebo vodou.

POZOR
Nepoužívejte jiné kapaliny, než alkohol a vodu. Mohly by poškodit plastové díly.

17.2 Skladování

UPOZORNĚNÍ
Přístroj neskladujte ve vlhkém stavu. Před uložením a skladováním ho nechte uschnout.

UPOZORNĚNÍ
Před skladováním přístroj, přepravní pouzdro a příslušenství vždy očistěte.
UPOZORNĚNÍ
Po delším skladování nebo po delší přepravě zkontrolujte před použitím přesnost přístroje kontrolním měřením.

POZOR
Pokud přístroj delší dobu nepoužíváte, vyjměte akumulátor. Kapalina vyteklá z baterií/akumulátorů může přístroj poškodit.

UPOZORNĚNÍ
Při skladování vybavení dbejte na stanovené teplotní meze, obzvláště v zimě a v létě, zejména pokud máte vybavení uložené ve vnitřním prostoru vozidla (-30 °C až +70 °C (-22 °F až +158 °F)).

17.3 Přeprava
POZOR
Při zasílání přístroje akumulátor izolujte nebo vyjměte z přístroje. Kapalina vyteklá z baterií/akumulátorů může přístroj poškodit.

Pro přepravu nebo zasílání vybavení používejte přepravní karton Hilti nebo obal s obdobnou jakostí.

18. Likvidace

VÝSTRAHA
Při nevhodné likvidaci vybavení může dojít k následujícím efektům:
Při spalování dílů z plastu vznikají jedovaté plyny, které mohou způsobit onemocnění osob.
Akumulátory mohou při poškození nebo při působení velmi vysokých teplot explodovat a tím způsobit otravu, popálení, poleptání kyselinami nebo znečistit životní prostředí.
Lehkovážnou likvidaci umožňují nepovolaným osobám používat vybavení nesprávným způsobem. Přitom můžete sobě a dalším osobám způsobit těžká poranění, jakož i znečistit životní prostředí.

Přístroje firmy Hilti jsou převážně vyrobeny z recyklovatelných materiálů. Předpokladem pro recyklaci materiálů je jejich řádné roztrždění. V mnoha zemích již je firma Hilti zařízena na příjem vašeho starého přístroje na recyklaci. Ptejte se zákaznického servisního oddělení Hilti nebo svého obchodního zástupce.

Jen pro státy EU
Elektronické zařízení nevyhazujte do domovního odpadu!
Podle evropské směrnice 2002/96/ES a 2006/66/ES o nakládání s použitými elektrickými a elektronickými zařízeními a podle odpovídajících ustanovení právních předpisů jednotlivých zemí se použitá elektrická zařízení a akumulátory musí sbírat odděleně od ostatního odpadu a odevzdat ke ekologické recyklaci.

Akumulátory likvidujte v souladu s národními předpisy. Pomožte chránit životní prostředí.
19. Záruka výrobce

Hilti zaručuje, že dodaný výrobek nemá žádné materiálové ani výrobní vady. Tato záruka platí za předpokladu, že se výrobek správně používá, ošetřuje a čistí v souladu s návodom k obsluze firmy Hilti, a že je dodržena technická jednota výrobku, tj. že se s výrobkem používá jen originální spotřební materiál, příslušenství a náhradní díly od firmy Hilti.

Tato záruka zahrnuje bezplatnou opravu nebo výměnu vadných dílů po celou dobu životnosti výrobku. Na díly, které podléhají normálnímu opotřebení, se tato záruka nevztahuje.

Další nároky jsou vyloučeny, pokud to neodporuje závazným národním předpisům. Hilti ne-

ručí zejména za bezprostřední nebo nepřímé škody vzniklé závadou nebo zaviněné vady-
ným výrobkem, za ztráty nebo náklady vzniklé v souvislosti s použitím nebo kvůli nemožnosti
použití výrobku pro určitý účel. Implicitní zá-
ruky prodejnosti nebo vhodnosti k použití ke
konkrétnímu účelu jsou vyloučeny.

Pro opravu nebo výměnu je nutno výrobek nebo
příslušné díly zaslat neprodleně po zjištění zá-
vady kompetentní prodejní organizaci Hilti.

Předkládaná záruka zahrnuje ze strany Hilti

veškeré záruční závazky a nahrazuje všechna
předcházející nebo současná prohlášení, pí-
semné nebo ústní dohody ohledně záruk.

20. Upozornění FCC (platné v USA) / upozornění IC (platné

v Kanadě)

POZOR

Tento přístroj byl testován a bylo zjištěno, že
spíňuje mezní hodnoty stanovené pro digitální
přístroje třídy B ve smyslu části 15 směrnic
FCC. Tyto mezní hodnoty stanovují dostateč-
nou ochranu před rušivým vyzražováním při in-
stalaci v obytných oblastech. Přístroje tohoto
druhu vytvářejí a používají radiové frekvence
a mohou je také vyzražovat. Mohou proto v pří-
padě, že nejsou instalovány a používány podle
návodů, způsobovat rušení příjmu rozhlasu.

Nicméně nemůže být zaručeno, že se při ur-
čité instalaci nemohou vyskytnout žádná ru-
šení. Pokud by tento přístroj způsobil rušení
rádia nebo televize, což lze zjistit jeho vypnutím

a opětovným zapnutím, doporučuji se uživa-
teli zkusit odstranit rušení pomocí následujících

opatření:

Změňte orientaci nebo místo přijímací antény.

Zvětšete vzdálenost mezi přístrojem a přijíma-
čem.

Poraďte se s prodejcem nebo se zkušeným

rádiovým a televizním technikem.

UPOZORNĚNÍ

Změny nebo modifikace, které nebyly výslovně
schváleny firmou Hilti, mohou mít za následek
ztrátu uživatelského oprávnění k používání pří-

stroje.
21. Prohlášení o shodě s EU

Označení: Tachymetr
Typové označení: POS 15/18
Rok výroby: 2010

Prohlašujeme na výhradní zodpovědnost, že tento výrobek je ve shodě s následujícími směrnicemi a normami: EN 61000-6-1, EN 61000-6-3, 2006/95/EG, 2004/108/EG.

Hilti Corporation

Dietmar Sartor
Head of BA Quality and Process Management
Business Area Electric Tools & Accessories
08 2010

Tassilo Deinzer
Head BU Measuring Systems
BU Measuring Systems
08 2010

Index

A
Akumulátor 2, 7, 22, 25
POA 80 7
vložení a výměna 2, 22
Atmosférické korekce 3, 34
Atmosférické vlivy 3, 35

B
Bod vůči ose 4, 85

C
Cíle 2, 18

Č
Číslo a datum 3, 32

D
Datové body 2, 20
Datové typy 4, 97

Dotyková obrazovka
alfanumericcká klávesnice 2, 25
číselná klávesnice 2, 24
obecné ovládací prvky 2, 25
rozdělení 2, 24
velikost 2, 23
Dvouosý kompenzátor 2, 18

E
Elektronická libela 3, 34

F
Funkční tlačítka 2, 23

H
Hilti PROFIS Layout 4, 97
vstup dat (import) 5, 98
výstup dat (export) 5, 98

I
Indikace sklonu
svísilý 3, 29
Instalace přístroje 2, 26
nad trubky a pomocí laserové olovnice 3, 27

K
Kalibrace v terénu 5, 99
Kalibráční servis Hilti 5, 102
Konfigurace 3, 30
Kontrola bodů
ve vztahu k ose 4, 88
Kontrola funkce 2, 23
Kontrolní body 4, 92
Korekce
atmosférických vlivů 3, 35

L
Laserová olovnice 1
Laserový ukazatel 2-3, 20, 34
stavová kontrolka 2, 25

M
Měření a zaznamenání
pomocí souřadnic 4, 78
Měření plochy 4, 81
Měření rozpětí 4, 74
Měření výšek 2, 20
Měření vzdálenosti 2, 18
Měření & zaznamenání 4, 76
pomocí stavebních os 4, 77
Měřicí bod 4, 94
smazání a zobrazení 95

N
Nabídka funkcí
FNC 3, 33

Nabíječka
POA 82 8
Naváděcí zařízení 1-3, 20, 33
Neprímé určení výšky 4, 83, 85

O
Objektiv 1
Odečítání hodnot na kruhu 3, 28-29
Okulár 1
Ovládací panel 2, 23

P
Pevný bod 4, 92
POA 50
reflektorová tyč (metrické jednotky) . . . 8
POA 51
reflektorová tyč (impiériální jednotky) . . 8
POA 80
akumulátor 7
POA 82
nabíječka 8
POAW-4
reflektorová fólie 8
Podsvícení displeje 3, 34
Poloha stanice 45
Polohy dalekohledu 2, 15
Princip měření 2, 17

Projekt
kopírování 4, 96
nové vytvoření 3-4, 36, 96
smazání 4, 95
výběr 4, 91

Projektové informace 3, 37
Projekty 3, 35
Proměřování 3, 69
pomocí souřadnic 4, 72
pomocí stavebních os 4, 70

Přístroj
instalace 3, 26

R
Reflektorová fólie
POAW-4 8
Reflektorová tyč 7
POA 50 2, 8, 19
POA 51 8
RS 232 5, 99

S
Sada rektifikačních klíčů 7-8
Síťový adaptér 7
POA 81 7
Souřadnice 2, 13
Stativ PUA 35 8
Stavební osy 2, 13
Svislé vyrovnání 4, 80

Svislé vytýčení
V-vytýčení 3, 62
Svislý pohon 1

T
Tachymetr 7
vypnutí 2, 26
Teodolit 3, 28
Transportní rukojeť 1
Trojnožka 1

U
Určení osy 4, 87

V
Vodorovné vytýčení
(H-vytýčení) 3, 54
Volné staničení 3, 47, 49
V-vytýčení
pomocí souřadnic 3, 67
Zadávání bodů
 pomocí souřadnic 92
 smazání bodů 93
 výběr bodů 2, 21, 92
 zpracování bodů 93
Zadávání staničního bodu 40
Zadávání záměrného bodu 40, 45
Zaostřovací šroub 1
Zapnutí přístroje 2, 26
Zobrazení aktivního projektu 3, 36
Zobrazení vodorovného kruhu 3, 28
PÔVODNÝ NÁVOD NA POUZÍVANIE

Tachymeter POS 15/18

Pred uvedením do prevádzky si bezo-
podmienečne prečítajte návod na ob-
sluhu.

Tento návod na obsluhu odkladajte vždy spolu s prístrojom.

Pred odovzdáním prístroja iným oso-
bám sa presvedčite, že návod na ob-
sluhu je jeho súčasťou.

1 Číslo odkazujú vždy na obrázky. Obrázky
k textu nájdete na rozkladacích stranách. Pri
študování návodu ich majte vždy otvorené.
V texte tohto návodu na obsluhu sa pojmom
"prístroj" vždy označuje tachymeter POS 15
alebo POS 18.

Časti krytu vzadu 1

1 Priehradka na akumulátor vľavo s uzatvá-
racou skrutkou

2 Nastavovacia skrutka trojnožky
3 Aretácia trojnožky
4 Ovládaci panel s dotykovou obrazovkou
5 Zaostrovacia skrutka
6 Okulár
7 Ďalekohľad s meračom vzdialenosti
8 Priezor na približné zacielenie

Časti krytu vpredu 2

10 Vertikálny pohon
11 Rozhranie USB, dvojité (mále a veľké)
12 Priehradka na akumulátor vpravo s uzat-
váracou skrutkou
13 Horizontálny pohon, prípadne pohon do
strán
14 Nastavovacia skrutka trojnožky
15 Trojnožka
16 Laserová olovnica
17 Pomoc pri navádzaní
18 Objektív
19 Transportná rukoväť

Obsah

1 Všeobecné informácie ... 111
 1.1 Signálné slová a ich význam ... 111
 1.2 Význam piktogramov a ďalšie pokyny 111
2 Opis ... 112
 2.1 Používanie v súlade s určeným účelom 112
 2.2 Opis prístroja ... 112
 2.3 Do rozsahu dodávky štandardnej výbavy patria 112
3 Príslušenstvo .. 113
4 Technické údaje .. 114
5 Bezpečnostné pokyny .. 116
 5.1 Základné bezpečnostné upozornenia 116
 5.2 Používanie v rozpore s určeným účelom využíťa 116
 5.3 Správne vybavenie pracovísk ... 117
5.4 Elektromagnetická tolerancia .. 117
5.4.1 Klasifikácia lasera pre prístroje triedy 2 117
5.4.2 Klasifikácia lasera pre prístroje triedy 3R 117
5.5 Všeobecné bezpečnostné opatrenia .. 118
5.6 Preprava ... 118
6 Opis systému ... 118
6.1 Všeobecné pojmy ... 118
6.1.1 Súradnice ... 118
6.1.2 Stavebné osi .. 119
6.1.3 Špecifické odborné pojmy .. 119
6.1.4 Polohy ďalekohľadu 4 3 .. 120
6.1.5 Pojmy a ich opisy .. 121
6.1.6 Skratky a ich významy .. 122
6.2 Systém merania uhlov .. 122
6.2.1 Princip merania .. 122
6.2.2 Dvojosový kompenzátor 5 .. 123
6.3 Meranie vzdialenosti .. 123
6.3.1 Meranie vzdialenosti 6 ... 123
6.3.2 Ciele ... 124
6.3.3 Reflektorová výtyčka ... 124
6.4 Meranie výšok ... 125
6.4.1 Meranie výšok ... 125
6.5 Pomoc pri navádzaní ... 126
6.5.1 Pomoc pri navádzaní 7 ... 126
6.6 Laserpointer 6 ... 126
6.7 Dátové body ... 126
6.7.1 Výber bodov ... 127
7 Prvé kroky ... 128
7.1 Akumulátory ... 128
7.2 Nabíjanie akumulátora ... 128
7.3 Vloženie a výmena akumulátorov 8 .. 128
7.4 Kontrola funkcie .. 129
7.5 Ovládacie panel .. 129
7.5.1 Funkčné tlačidlá .. 129
7.5.2 Veľkosť dotykovej obrazovky ... 129
7.5.3 Rozdelenie dotykovej obrazovky 130
7.5.4 Dotyková obrazovka - numerická klávesnica 130
7.5.5 Dotyková obrazovka - alfanumerická klávesnica 131
7.5.6 Dotyková obrazovka - všeobecné ovládacie prvky 131
7.5.7 Indikácia stavu Laserpointer ... 132
7.5.8 Indikátory stavu akumulátora ... 132
7.6 Zapínanie/vypínanie .. 132
7.6.1 Zapnutie ... 132
7.6.2 Vypínanie ... 133
1. Všeobecné informácie

1.1 Signálné slová a ich význam

NEBEZPEČENSTVO
Na označenie bezprostredne hroziaceho nebezpečenstva, ktoré môže spôsobiť ťažký úraz alebo usmrtenie.

VÝSTRAHA
V prípade možnej nebezpečnej situácie, ktorá môže viesť k ťažkým poraneniam alebo k usmrtleniu.

POZOR
V prípade možnej nebezpečnej situácie, ktorá by mohla viesť k ťažkým zraneniam osôb alebo k vecným škodám.

UPOZORNENIE
Pokyny na používanie a iné užitočné informácie

1.2 Význam pictogramov a ďalšie pokyny

Symboly

<table>
<thead>
<tr>
<th>Symbol</th>
<th>O význame</th>
</tr>
</thead>
<tbody>
<tr>
<td>klamka</td>
<td>Pred použitím si prečítajte návod na používanie</td>
</tr>
<tr>
<td>upokojenie</td>
<td>Všeobecná výstraha pred nebezpečenstvom</td>
</tr>
<tr>
<td>recyklácia</td>
<td>Odpad odovzdate na recykláciu</td>
</tr>
<tr>
<td>protišumievanie</td>
<td>Nedívajte sa do lúcha</td>
</tr>
</tbody>
</table>

Symboly triedy lasera II / trieda 2

Laser triedy II podľa CFR 21, § 1040 (FDA)
Laser triedy 2, podľa normy EN 60825:2008
2. Opis

2.1 Používání v súlade s určeným účelom

Prístroj je určený na meranie vzdialenosť a smerov, výpočet pozícií cieľa v troch dimenziách a odvodených hodnôt, ako aj vytvorenia daných súradníck alebo hodnôt vzťahujúcich sa na osi.

Na vylúčenie rizika úrazu používajte iba origi-nále príslušenstvo a nástroje Hilti.

2.2 Opis prístroja

S tachymetrom Hilti POS 15/18 sa dajú určovať objekty ako pozícia v priestore. Prístroj obsa-huje vodorovný a zvislý kruh s digitálnym rozde- lením kruhu, dve elektronické libely (kompenzátor), koaxiálny merac vzdialenosť zabudovaný v ďalekohľade, ako aj procesor na vykonávanie výpočtov a ukladanie dát.

Na prenos dát medzi tachymetrom a PC a opačne, na úpravu dát a ich odovzdanie do iných systémov je k dispozícii PC-softvér Hilti PROFIS Layout.

2.3 Do rozsahu dodávky štandardnej výbavy patria

1. Tachymeter
2. Sietový adaptér vráťane káble na nabíjačku
3. Nabíjačka
4. Akumulátory typu Li-Ion 3,8 V 5200 mAh
5. Reflektorová výtyčka
6. Nastavovací kľúč POW 10
7. Varovné štítky pre laser
8. Certifikát výrobcu
9. Návod na používanie
10. Kufr Hilti

Voliteľné: Hilti PROFIS Layout (CD-ROM s PC-softvérom)
Voliteľné: Konektor ochrany pred kopiárovaním pre PC-softvér
Voliteľné: Dátový kábel USB
3. Príslušenstvo

<table>
<thead>
<tr>
<th>Obrázok</th>
<th>Označenie</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Akumulátor POA 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siet'ový adaptér POA 81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nabíjačka POA 82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflektorová výtyčka POA 50 (s metrickými jednotkami), pozostávajúca zo štyroch tyčových prvkov (s dĺžkou po 300 mm), hrotu výtyčky (s dĺžkou 50 mm) a platničky s reflektorom (s výškou 100 mm, prípadne vzdialenosťou 50 mm od stredu), slúži na meranie bodov na podlade.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflektorová výtyčka POA 51 (s imperiálnymi jednotkami), pozostávajúca zo štyroch tyčových prvkov (s dĺžkou po 12 palcov), hrotu výtyčky (s dĺžkou 2,03 palca) a platničky s reflektorom (s výškou 3,93 palca, prípadne vzdialenosťou 1,97 palca od stredu), slúži na meranie bodov na podlade.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samolepiaca fólia na umiestnenie referenčných bodov na vyzvyšené ciele, ako sú múry alebo stĺpy.</td>
<td></td>
</tr>
<tr>
<td>Obrázok</td>
<td>Označenie</td>
<td>Opis</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Statív PUA 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nastavovací klúč POW 10</td>
<td>Môže používať iba odborný personál!</td>
</tr>
<tr>
<td></td>
<td>HILTI PROFIS Layout</td>
<td>Aplikačný softvér, ktorý slúži na vytváranie pozičných bodov z údajov CAD a na ich prenos do prístroja.</td>
</tr>
<tr>
<td></td>
<td>Konektor ochrany pred kopírovaním POA 91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dátový kábel POW 90</td>
<td></td>
</tr>
</tbody>
</table>

4. Technické údaje

Technické zmeny vyhradené!

UPOZORNENIE

Až na presnosť merania uhlov sa obidva prístroje navzájom neodlišujú.

Ďalekohľad

<table>
<thead>
<tr>
<th>Zváčšenie ďalekohľadu</th>
<th>30x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Najkratšia vzdialenosť pri cielení</td>
<td>1,5 m (4,9 ft)</td>
</tr>
<tr>
<td>Zorné pole ďalekohľadu</td>
<td>1° 20': 2,3 m / 100 m (7,0 ft / 300 ft)</td>
</tr>
<tr>
<td>Otvor objektívu</td>
<td>45 mm (1,8")</td>
</tr>
</tbody>
</table>
Kompenzátor

<table>
<thead>
<tr>
<th>Typ</th>
<th>2 osi, kvapalina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pracovný rozsah</td>
<td>±3'</td>
</tr>
<tr>
<td>Presnosť</td>
<td>2</td>
</tr>
</tbody>
</table>

Meranie uhlov

Presnosť POS 15 (DIN 18723)	5"
Presnosť POS 18 (DIN 18723)	3"
Systém snímania uhlov	diametrálny

Meranie vzdialenosťí

<table>
<thead>
<tr>
<th>Dosah</th>
<th>340 m (1 000 ft) Kodak, sivá 90 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presnosť</td>
<td>±3 mm + 2 ppm (0,01 ft + 2 ppm)</td>
</tr>
<tr>
<td>Výkon</td>
<td>2,4 mW</td>
</tr>
<tr>
<td>Vlnová dĺžka</td>
<td>658 nm</td>
</tr>
<tr>
<td>Trieda lasera</td>
<td>Trieda 3R</td>
</tr>
</tbody>
</table>

Pomoc pri navádzaní

<table>
<thead>
<tr>
<th>Uhol rozbiehavosti</th>
<th>1,4°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typický dosah</td>
<td>70 m (230 ft)</td>
</tr>
</tbody>
</table>

Laserová olovnica

<table>
<thead>
<tr>
<th>Presnosť</th>
<th>1,5 mm na 1,5 m (1/16 na 3 ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výkon</td>
<td>< 1 mW</td>
</tr>
<tr>
<td>Vlnová dĺžka</td>
<td>635 nm</td>
</tr>
<tr>
<td>Trieda lasera</td>
<td>Trieda 2</td>
</tr>
</tbody>
</table>

Pamäť dát

<table>
<thead>
<tr>
<th>Velkosť pamäte (dátové bloky)</th>
<th>10 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pripojka na prenos dát</td>
<td>Hostiteľ a klient, 1x sériové RS-232C, 2x USB</td>
</tr>
</tbody>
</table>

Displej

<table>
<thead>
<tr>
<th>Typ</th>
<th>Farebný displej (dotyková obrazovka) 320 x 240 pix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osvetlenie</td>
<td>5-stupňové</td>
</tr>
<tr>
<td>Kontrast</td>
<td>Prepínameňný režim pre deň / noc</td>
</tr>
</tbody>
</table>

Trieda ochrany IP

| Trieda | IP 56 |

Bočné pohony

| Typ | nekonečné |

Závit na statív

| Závit trojnožky | 5/8" |
Akumulátor POA 80

<table>
<thead>
<tr>
<th>Typ</th>
<th>litium-ionový</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menovité napätie</td>
<td>3,8 V</td>
</tr>
<tr>
<td>Kapacita akumulátora</td>
<td>5 200 mAh</td>
</tr>
<tr>
<td>Čas nabijania</td>
<td>4 h</td>
</tr>
<tr>
<td>Čas prevádzky (pri meraniach vzdialeností / uhlov každých 30 sekúnd)</td>
<td>16 h</td>
</tr>
<tr>
<td>Hmotnosť*</td>
<td>0,1 kg (0,2 libry (lbs))</td>
</tr>
<tr>
<td>Rozmery</td>
<td>67 mm x 39 mm x 25 mm (2,6" x 1,5" x 1")</td>
</tr>
</tbody>
</table>

Sietťový adaptér POA 81 a nabíjačka POA 82

<table>
<thead>
<tr>
<th>Napájanie elektrickým prúdom</th>
<th>100...240 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sietťová frekvencia</td>
<td>47...63 Hz</td>
</tr>
<tr>
<td>Menovitý prúd</td>
<td>4 A</td>
</tr>
<tr>
<td>Menovité napätie</td>
<td>5 V</td>
</tr>
<tr>
<td>Hmotnosť (sietťový adaptér POA 81)</td>
<td>0,25 kg (0,6 libry (lbs))</td>
</tr>
<tr>
<td>Hmotnosť (nabíjačka POA 82)</td>
<td>0,06 kg (0,1 libry (lbs))</td>
</tr>
<tr>
<td>Rozmery (sietťový adaptér POA 81)</td>
<td>108 mm x 65 mm x 40 mm (4,3" x 2,6" x 0,1")</td>
</tr>
<tr>
<td>Rozmery (nabíjačka POA 82)</td>
<td>100 mm x 57 mm x 37 mm (4,0" x 2,2" x 1,5")</td>
</tr>
</tbody>
</table>

Teplota

| Prevádzková teplota | -20...+50 °C (-4 °F až +122 °F) |
| Skladovacia teplota | -30...+70 °C (-22 °F až +158 °F) |

Rozmery a hmotnosti

| Rozmery | 149 mm x 145 mm x 306 mm (5,9" x 5,7" x 12") |
| Hmotnosť* | 4,0 kg (8,8 libry (lbs)) |

5. Bezpečnostné pokyny

5.1 Základné bezpečnostné upozornenia

Okrem bezpečnostno-technických upozornení uvedených v jednotlivých kapitolách tohto návodu na obsluhu sa vždy musia striktne dodržiavať nasledujúce nariadenia.

5.2 Používanie v rozpore s určeným účelom využitia

Ak bude prístroj alebo jeho pridavné zariadenia nesprávne používať nekvalifikovaný personál alebo ak sa prístroj bude používať v rozpore s predpísaným účelom jeho využitia, môže dojšť k vzniku nebezpečenstva.

a) Prístroj nikdy nepoužívajte bez dodržiavania príslušných inštrukcií alebo bez prečítania tohto návodu.

b) Nevyraďujte z činnosti žiadne bezpečnostné zariadenia a neodstraňujte žiadne výstražné štítky a štítky s upozornením.

5. Prístroj dávajte opravovať iba do servisných stredísk Hilti. Pri neodbornom otváraní prístroja môže vzniknúť laserové žiarenie, ktoré prekračuje triedu 3R.
d) Manipulácia alebo zmény na prístroji nie sú dovolené.

e) Aby sa predišlo riziku poranenia, používajte iba originálne príslušenstvo a pridávané za-
riadenia Hilti.

f) Prístroj nepoužívajte vo výbušnom pre-
stredí.

g) Na čistenie používajte len čisté a mäkké
utiery. Ak je to potrebné, môžete ich mierne
navlhčiť čistým alkoholom.

h) Zabraňte prístupu detí k laserovým prístro-
jom.

i) Merania na penových plastoch, ako je napríklad Styropor alebo Styrodor, na
snehu alebo plochách s intenzívnom
odzrkadlováním a podobne, môžu viest'
k nesprávnym hodnotám zisteným pri
meraní.

j) Merania na podkladoch so zlým odrážaním,
v prostredíach s velkými odrazmi, môžu
viest' k skresleným výsledkom merania.

k) Merania cez sklo alebo iné objekty môžu
výsledok merania skresliť.

l) Rýchlo sa meniace podmienky merania, na-
priklad osoby prebiehajúce cez merací lúč,
môžu skresliť výsledok merania.

m) Prístroj nesmerujte na sinko alebo iné inten-
zívne zdroje svetla.

n) Prístroj nepoužívajte ako nivelačný prístroj.

o) Pred dôležitým meraním, po páde alebo
po pôsobení iných mechanických vplyvov
prístroj preskúšajte.

5.3 Správne vybavenie pracovisk

a) Zaistite miesto merania a pri umiestňovaní
prístroja dbajte na to, aby lúč nesmeroval
na vás alebo na iné osoby.

b) Používajte prístroj len v rámci definovaných
hranic použitia, to znamená, že nevykoná-
vajte meranie na zrkadle, chromovej oceli,
leštených kameňoch a podobne.

c) Dodržiavajte regionálne predpisy o bezpeč-
nosti a ochrane zdravia pri práci.

5.4 Elektromagnetická tolerancia

I keď prístroj spína prisne požiadavky prísluš-
ných smerníc, nemôže firma Hilti vylúčiť mož-
nosť, že prístroj
- bude rušiť iné prístroje (napr. navigačné za-
riadenia lietadiel) alebo

- že bude rušený silným žiareniom, čo môže
viest' k chybným operáciám.

V týchto prípadoch, alebo ak máte nejaké po-
chybnosti, vykonajte kontrolné merania.

5.4.1 Klasifikačia lasera pre prístroje

triedy 2

Laserová olovnica prístroja zodpovedá trie-
de laser 2, na základe normy IEC825-1 /
EN60825-01:2008 a zodpovedá CFR 21
§ 1040 (Lose Notice 50). Pri náhodnom
krátkodobom pohľade do laserového lúča
chráni ako vrodený reflex žmurknutia. Tento
ochranný reflex žmurknutia však môžu
negatívne ovplyvniť lieky, alkohol alebo drogy.
Tieto prístroje sa smú používať bez ďalších
ochranných opatrení. Napríek tomu, podobne
ako pri slnečnom svetle, by sa človek nemal
pozerat priamo do zdroja svetla. Laserový lúč
nesmerujte na iné osoby.

5.4.2 Klasifikačia lasera pre prístroje

triedy 3R

Merací laser prístroja na meranie vzdialenos-
ť zodpovedá trieđe laser 3R, na základe normy
IEC825-1 / EN60825-1:2008 a zodpovedá CFR
21 § 1040 (Lose Notice 50). Tieto prístroje sa
smú používať bez ďalších ochranných opatrení.
Nedávajte sa do lúča a lúč nesmerujte na iné
osoby.

a) Prístroje triedy lasera 3R a triedy Ilia by mali
obsluhovala iba kvalifikované osoby.

b) Oblasti použitia musia byť označené vý-
stražnými štitkami pre lasery.

c) Laserové lúče musia prebiehať ďaleko nad
alebo pod úrovňou očí.

d) Vykonajte bezpečnostné opatrenia, aby sa
zaistilo, že laserový lúč nebude neúmyselne
dopadať na plochy, ktoré ho odrazia ako
zrkadlo.

e) Vykonajte opatrenia, ktoré zaistia, aby
osoby nebírali priamo do laserového lúča.

f) Dráha laserového lúča nesmie presahovať
do nekontrolovaných oblastí.

g) Nepoužívané laserové prístroje sa musia
uložiť na mieste, ku ktorému nemajú prístup
nepovolané osoby.
5.5 Všeobecné bezpečnostné opatrenia

a) Pred používaním prístroja skontrolujte, či nie je poškodený. V prípade poškodenia prístroja dajte opraviť v servisnom stredisku Hilti.

b) Dodržiavajte prevádzkové teplotu a teplotu skladovania.

c) Po páde alebo pôsobení iného mechanickejho vplyvu skontrolujte presnosť prístroja.

d) Keď prístroj prenášate z veľmi chladného prostredia do teplejšieho alebo naopak, nechajte ho pred používaním aklimatizovať.

e) Pri použití so statickými zaistití, aby bol prístroj pevne naskrutkovaný a aby statív stál spoľahlivo a pevne na zemi.

f) Udržujte výstupné okienko lasera čisté, aby ste zabránili chybnému meraniu.

g) Hoci je prístroj koncipovaný na používanie v ťažkých podmienkach na stavenisku, mali by ste s ním zabezpečiť starostlivo, ako s ostatnými optickejmi a elektronickými prístrojmi (ďalekohľad, okuliare, fotoaparát).

h) Hoci je prístroj chránený proti vniknutiu vlhkosti, mali by ste ho pred odložením do transportného kufru dosucha pouťerať.

i) Z bezpečnostných dôvodov prekontrolujte predtým vami nastavené hodnoty, resp. predchádzajúce nastavenia prístroja.

j) Pri vyrovňávaní prístroja pomocou krabicej libely sa na prístroj divajte len šikmo.

k) Kryt priestoru na akumulátor starostlivo zaistite, aby akumulátor nemohol vypadnúť alebo aby nemohol vzniknúť kontakt, v dôsledku ktorého by sa prístroj neúmyselne vypol, čo by malo za následok stratu dát.

5.6 Preprava

Pri zasielani prístroja izolujte akumulátor alebo ich vyberite z prístroja. Vytéka-júce batérie/akumulátory môžu prístroj poškodiť.

Aby nedochádzalo k poškodzovaniu životného prostredia, musíte sa pri likvidácii prístroja a akumulátorov/batérií riadiť platnými miestnymi predpismi.

V prípade pochybnosti oslovte výrobcu.

6. Opis systému

6.1 Všeobecné pojmty

6.1.1 Súradnice

Na niektorých stavbách označí geodetická firma namiesto stavebných osí alebo aj v kombinácii s nimi aj ďalšie body a ich pozíciu zapísie prostredníctvom súradníc.

Súradnice sú vo všeobecnosti založené na systéme súradnic krajiny, na ktorom sú vo väčšine prípadov založené aj mapy.
6.1.2 Stavebné osi

Pred začatím stavby zvyčajne vyznačí geodetická spoločnosť najprv na mieste stavby a v jej okolí výškové značky a stavebné osi.
Pre každú stavebnú os sa na zemi vyznačia dva konce.
Od týchto značiek sa umiestňujú jednotlivé stavebné prvky. Pri väčších budovách je dostupný váčší počet stavebných osí.

6.1.3 Špecifické odborné pojmy

Osi prístroja

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Cieľová os</td>
</tr>
<tr>
<td>b</td>
<td>Zvislá os</td>
</tr>
<tr>
<td>c</td>
<td>Sklopná os</td>
</tr>
</tbody>
</table>
Z nameraných hodnôt odčítaných na vodorovnom kruhu 70° k jednému cieľu a 30° k druhému cieľu možno vypočítať zvieraný uhol 70° - 40° = 30°.

Tým, že zvislý kruh je vyrovnaný na 0° k smeru gravitácie alebo na 0° k horizontálnemu smeru, sú tu uhly v podstate určené smerom gravitácie. S týmito hodnotami sú horizontálna vzdialenosť a výškové rozdiely vypočítavane z nameranej šikmej vzdialenosť.

6.1.4 Polohy ďalekohľadu

Aby bolo možné odčítané hodnoty na vodorovnom kruhu správne priradiť k zvislému uhlu, hovoríme o polohách ďalekohľadu. Tzn., že podľa smeru ďalekohľadu voči ovládaciemu panelu možno určiť, v ktorej "polohu" sa meralo.

Keď máte priamo pred sebou displej a okulár, nachádza sa prístroj v polohe ďalekohľadu 1.

Keď máte priamo pred sebou displej a objektív, nachádza sa prístroj v polohe ďalekohľadu 2.
<table>
<thead>
<tr>
<th>6.1.5 Pojmy a ich opisy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cieľová os</td>
</tr>
<tr>
<td>Klopná os</td>
</tr>
<tr>
<td>Zvislá os</td>
</tr>
<tr>
<td>Zenit</td>
</tr>
<tr>
<td>Horizont</td>
</tr>
<tr>
<td>Nadir</td>
</tr>
<tr>
<td>Zvislý kruh</td>
</tr>
<tr>
<td>Zvislý smer</td>
</tr>
<tr>
<td>Vertikálny uhol (Vu)</td>
</tr>
<tr>
<td>Výškové uhly</td>
</tr>
<tr>
<td>Horizontálny kruh</td>
</tr>
<tr>
<td>Vodorovný smer</td>
</tr>
<tr>
<td>Horizontálny uhol (Hu)</td>
</tr>
<tr>
<td>Šikmá vzdialenosť (Sv)</td>
</tr>
<tr>
<td>Horizontálna vzdialenosť (Hv)</td>
</tr>
<tr>
<td>Alhídáda</td>
</tr>
<tr>
<td>Trojnožka</td>
</tr>
<tr>
<td>Stanica prístroja</td>
</tr>
<tr>
<td>Výška stanice (Stan Výš)</td>
</tr>
<tr>
<td>Výška prístroja (Vi)</td>
</tr>
<tr>
<td>Výška reflektora (Vr)</td>
</tr>
<tr>
<td>Orientačný bod</td>
</tr>
<tr>
<td>EDM</td>
</tr>
</tbody>
</table>
Východná súradnica (Vých) V typickom systéme súradníc pre vymeriavanie sa táto hodnota vztahuje na smer východ - západ.
Severná súradnica (Sev) V typickom systéme súradníc pre vymeriavanie sa táto hodnota vztahuje na smer sever - juh.
Dĺžka (Ln) Toto je označenie pre rozmer dĺžky pozdĺž stavebnej osi alebo inej referenčnej línie.
Prieč. (Offs) Toto je označenie pre vzdialenosť v pravom uhle voči stavebnej osi alebo inej referenčnej líni.
Výška (Výš) Pojmom výška sa označuje viacero hodnôt. Výška je vertikálna vzdialenosť k referenčnému bodu alebo k referenčnej ploche.

6.1.6 Skratky a ich významy

<table>
<thead>
<tr>
<th>Skrátka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu</td>
<td>Horizontálny (vodorovný) uhol</td>
</tr>
<tr>
<td>Vu</td>
<td>Vertikálny uhol</td>
</tr>
<tr>
<td>dHu</td>
<td>Delta – horizontálny (vodorovný) uhol</td>
</tr>
<tr>
<td>dVu</td>
<td>Delta – vertikálny uhol</td>
</tr>
<tr>
<td>Sv</td>
<td>Šímková vzdialenosť</td>
</tr>
<tr>
<td>Hv</td>
<td>Horizontálna vzdialenosť</td>
</tr>
<tr>
<td>dHv</td>
<td>Delta – horizontálna vzdialenosť</td>
</tr>
<tr>
<td>Vi</td>
<td>Výška prístroja</td>
</tr>
<tr>
<td>Vr</td>
<td>Výška reflektora</td>
</tr>
<tr>
<td>Ref. výška</td>
<td>Výška referenčného bodu</td>
</tr>
<tr>
<td>Stan Výš</td>
<td>Výška stanice</td>
</tr>
<tr>
<td>Vých</td>
<td>Východná súradnica</td>
</tr>
<tr>
<td>Sev</td>
<td>Severná súradnica</td>
</tr>
<tr>
<td>Offs</td>
<td>Priečka (Prieč.)</td>
</tr>
<tr>
<td>Ln</td>
<td>Dĺžka</td>
</tr>
<tr>
<td>dVýš</td>
<td>Delta – výška</td>
</tr>
<tr>
<td>dVých</td>
<td>Delta – východná súradnica</td>
</tr>
<tr>
<td>dSev</td>
<td>Delta – severná súradnica</td>
</tr>
<tr>
<td>dOffs</td>
<td>Delta – prieč.</td>
</tr>
<tr>
<td>dLn</td>
<td>Delta – dĺžka</td>
</tr>
</tbody>
</table>

6.2 Systém merania uhlov

6.2.1 Princip merania

Prístroj určuje uhol prepočtom, vždy z dvoch odčítaní kruhu.
Na meranie vzdialenosťí sú prostredníctvom viditeľného laserového lúča vysielané meracie vlány, ktoré sa odrazia na objekte.
Z týchto fyzikálnych prvkov sa zistujú vzdialenosti.
Pomocou elektrických libiel (kompenzátorov) sa zistujú sklony prístroja a korigujú sa odčítania kruhu a vykonáva sa aj výpočet z nameranej šírmej vzdialenosti, horizontálnej vzdialenosti a výškového rozdielu.

Pomocou zabudovaného výpočtového procesora sa dajú všetky jednotky vzdialeností, ako sú metrické metre a tzv. imperiálny systém stôp, yardov, palcov a pod. konvertovať a prostredníctvom digitálneho rozdelenia kruhu je možné znázorniť rôzne uhlové jednotky, ako napríklad 360° šestdesiatinné delenie (° ′ ″) alebo jednotky Gon (g), kde celý kruh má 400 g dielikov na stupníci.

6.2.2 Dvojosový kompenzátor

Kompenzátor je v princípe nivelačný systém, napríklad elektrické libely, na určenie zvyškového sklonu osi tachymetra.

S použitím dvojosového kompenzátora sa zvyškové sklony v pozdĺžnom a priečnom smere dajú určiť s veľkou presnosťou.
Matematická korekcia zaručuje, že zvyškové sklony nemajú žiadny vplyv na merania uhlov.

6.3 Meranie vzdialenosti

6.3.1 Meranie vzdialenosti

Meranie vzdialenosti sa vykonáva pomocou viditeľného laserového lúča, ktorý vystupuje zo stredu objektívu, čo znamená, že merač vzdialenosti je koaxiálny.
Laserový lúč meria na "normálnych" povrchoch bez pomoci špecifického reflektora. Normálnymi povrchmi sú všetky neodzrkadľujúce povrchy, ktoré môžu byť úplne nerovné či drsné. Dosah je závislý od schopnosti odrazu od cieľového povrchu, čo znamená, že len málo odražajúce povrchy, ako sú povrchy modrej, červenej, zelenej farby, môžu spôsobiť určité straty v oblasti dosahu.

S prístrojom sa dodáva reflektorová výtyčka s nalepenou reflexnou fóliou. Meranie na reflexnej fólii poskytuje kvalitné meranie vzdialeností aj pri veľkých dosahoch. Reflektorová výtyčka dodatočne umožňuje meranie vzdialeností na bodech na zemi.

UPOZORNENIE

Pravidelne kontrolujte nastavenie (vyrovnanie) viditeľného laserového meracieho lúča voči cieľovej osi. V prípade, že je potrebné nastavenie či vyrovnanie alebo ak si nie ste istí, odošlite prístroj do najbližšieho servisného strediska spoločnosti Hilti.

6.3.2 Ciele

S meracím lúčom je možné vykonávať meranie na akomkoľvek pevne stojacom cieli.

Pri meraní vzdialeností je potrebné dávať pozor na to, aby sa počas merania vzdialenosti nepohyboval žiadny iný objekt cez merací lúč.

UPOZORNENIE

V opačnom prípade existuje možnosť, že vzdialenosť sa nebude vztahovať na želaný cieľ, ale na iný objekt.

6.3.3 Reflektorová výtyčka

Reflektorová výtyčka POA 50 (s metrickými jednotkami), pozostávajúca zo 4 tyčových prvkov (s dĺžkou po 300 mm), hrotu výtyčky (s dĺžkou 50 mm) a platničky s reflektorom (s výškou 100 mm, prípadne vzdialenosťou 50 mm od stredu), slúži na meranie bodov na zemi.
Reflektorová výtýčka POA 51 (s imperiálnymi jednotkami), pozostávajúca zo štyroch tyčových prvkov (s dĺžkou po 12 palcov), hrotu výtýčky (s dĺžkou 2,03 palca) a platničky s reflektorom (s výškou 3,93 palca, prípadne vzdialenost’ou 1,97 palca od stredu), slúži na meranie bodov na podlahe.

Pomocou integrované libely sa dá reflektorová výtýčka postaviť kolmo nad bodom na zemi. Vzdialenosť od hrotu tyče až po stred reflektorová je variabilná, aby bol zaručený volný výhľad pre laserový merací lúč, aj ponad rôzne prekážky.

Potlačou na reflexnej fólii je zaručené bezpečné meranie smeru a vzdialeností, okrem toho poskytuje reflexná fólia väčší dosah, oproti iným cieľovým povrchom.

<table>
<thead>
<tr>
<th>Dĺžky reflektorových výtýčiek</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
</tr>
</thead>
<tbody>
<tr>
<td>POA 50 (s metrickými jednotkami)</td>
<td>100 mm</td>
<td>400 mm</td>
<td>700 mm</td>
<td>1 000 mm</td>
<td>1 300 mm</td>
</tr>
<tr>
<td>POA 51 (s imperiálnymi jednotkami)</td>
<td>4"</td>
<td>16"</td>
<td>28"</td>
<td>40"</td>
<td>52"</td>
</tr>
</tbody>
</table>

6.4 Meranie výšok
6.4.1 Meranie výšok

S prístrojom je možné merat’ výšky, či prípadne výškové rozdiely.
Merania výšok sú založené na metóde "trigonometrických určovaní výšok" a vypočítavajú sa zodpovedajúcim spôsobom.
Merania výšok sa vypôčítavajú pomocou *vertikálneho uhla* a šikmej *vzdialenosti* v spojení s *výškou prístroja* a *výškou reflektora*.

\[\text{dVýš} = \cos(Vu) \times Sv + Vi - Vr + (\text{kor.}) \]

Na výpočet absolútnej výšky cieľového bodu (bodu na zemi) sa pripočítava výška stanice (Stan Výš) k hodnote delta výšky.

\[\text{Výš} = \text{Stan Výš} + \text{dVýš} \]

6.5 Pomoc pri navádzaní

6.5.1 Pomoc pri navádzaní

Pomoc pri navádzaní možno manuálne zapnúť alebo vypnúť a frekvenciu blikania možno meniť v 4 stupňoch.

Pomoc pri navádzaní pozostáva z dvoch červených LED-diód v tele ďalekohľadu. V zapnutom stave bliká jedna z dvoch LED-diód, aby bolo možné jednoznačne vidieť, či sa osoba nachádza naľavo alebo napravo od cieľovej linie.

Osoba, ktorá stojí vo vzdialenosti aspoň 10 m od prístroja a v blízkosti cieľovej linie, vidí buď blikajúce alebo trvalé svetlo silnejšie, v závislosti od toho, či sa nachádza naľavo alebo napravo od cieľovej linie.

Osoba sa nachádza v cieľovej linii vtedy, keď vidí obidve LED-diódy svietiť s rovnakou intenzitou.

6.6 Laserpointer

Prístroj má aj možnosť trvalého zapnutia laserového meracieho lúča.

Trvalo zapnutý laserový merací lúč sa ďalej označuje ako "Laserpointer".

Ak sa práce vykonávajú v interiéri, je možné Laserpointer použiť na cielenie, prípadne na ukázanie smeru merania.

V exteriéri je však merací lúč viditeľný iba za určitých podmienok a táto funkcia sa v praxi príliš neuplatní.

6.7 Dátové body

Tachymetre Hilti merajú dátá, ktorých výsledky vytvárajú merací bod.

Rovnakým spôsobom sa dátové body so svojim opisom pozície používajú v aplikáciách, ako je napríklad vytýčenie alebo aj na určenie a určenie či stabilizovanie stanice.

Na ulôženie či urýchlenie výberu bodov sú v tachometri Hilti dostupné rôzne možnosti.
6.7.1 Výber bodov

Výber bodov je dôležitou súčasťou systému tachymetra, pretože body sú merané vo všeobecnosti a body sa aj opätovne využívajú na vytváranie, pre stanice, na orientácie a porovnávacie merania. Body je možné vyberať rôznym spôsobom:

1. Z plánu
2. Zo zoznamu
3. Manuálnym zadaním

Body z plánu

Kontrolné body (fixné body) sú pre výber bodov dané k dispozícii graficky.

Body sa v grafike vyberajú tuknutím prstom, prípadne tuknutím perom.

Zvolte z plánu

Zobrazenie zvoleného bodu z grafiky.

Zruš

Prerušenie a návrat na predchádzajúce zobrazenie.

Man

Výber bodu manuálnym zadaním.

OK

Potvrdenie a prevzatie zadania.

Znázornenie všetkých bodov v zobrazovacom poli.

Výber bodu zo zoznamu.

Zváčsenie náhľadu.

Zmenšenie náhľadu.

Zváčsenie vybranej oblasti.

UPOZORNENIE

Dáta bodov, ku ktorým je priradený nejaký grafický prvok, sa na tachymetrií nedajú upravovať a ani vymazávať. Túto činnosť možno vykonávať len v programe Hilti PROFIS Layout.
Body zo zoznamu

Zvolte zo zoznamu 14/06/11 13:24

Aplikácia Správca dát/Projekt

Bod ID Axis_1

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>Výč</th>
<th>Sev</th>
<th>Výš</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis_1</td>
<td>16.779</td>
<td>30.445</td>
<td>0.000</td>
</tr>
<tr>
<td>Axis_2</td>
<td>16.779</td>
<td>57.944</td>
<td>0.000</td>
</tr>
<tr>
<td>Axis_3</td>
<td>9.779</td>
<td>57.944</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Späť Plán Oznan Man OK

Prerušenie a návrat na predchádzajúce zobrazenie.

Výber bodu z plánu.

Výber bodu manuálnym zadaním.

Potvrdenie a prevzatie zadaní.

Body s manuálnym zadaním

Zvolte ručné zadávanie 14/06/11 13:24

Aplikácia Správca dát/Projekt

Bod ID 24

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>Výč</th>
<th>Sev</th>
<th>Výš</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Späť Plán Oznan Man OK

Prerušenie a návrat na predchádzajúce zobrazenie.

Výber bodu z plánu.

Výber bodu zo zoznamu.

Potvrdenie a prevzatie zadaní.

7. Prvé kroky

7.1 Akumulátor
Prístroj obsahuje dva akumulátory, ktoré sa vybíjajú postupne po sebe.
Vždy je indikované aktuálne nabitie obidvoch akumulátorov.
Pri výmene je možné používať jeden akumulátor na prevádzku, zatiaľ čo sa druhý akumulátor nabíja.
Kvôli výmene akumulátorov počas prevádzky a preto, aby sa zabránilo vypnutiu prístroja, má zmysel meniť akumulátovery postupne po sebe.

7.2 Nabíjanie akumulátora
Po vybalení prístroja najprv vyberte z puzdra sieteový adaptér, nabíjačku a akumulátor.
Akumulátory nechajte nabíjať cca 4 hodiny.

7.3 Vloženie a výmena akumulátorov
Nabité akumulátory vložte do prístroja konektorom smerom k prístroju a nadol. Starostlivo zaistite kryt priestoru na akumulátor.
7.4 Kontrola funkcie

UPOZORNENIE
Pamätajte prosím na to, že tento prístroj je kvôli otáčaniu okolo alhidády vybavený klznými spojkami a nemusí sa zaistovať na bočných pohonoch.

Bočné pohony pre horizontálny a vertikálny smer sú nekonečnými pohonmi, porovnateľnými s optickým nivelátorom.
Najprv na začiatku a potom v pravidelných intervaloch skontrolujte funkciu prístroja podľa nasledujúcich kritérií:

1. Na kontrolu klzných spojok otáčajte prístroj rukou opatrne doľava a doprava a ďalekohľad smerom nahor a nadol.
2. Otáčajte bočné pohony pre horizontálny a vertikálny smer opatrne do obidvoch smerov.
3. Otočte zaostrovacie koliesko úplne doľava. Pozrite sa do ďalekohľadu a pomocou prstenca okulára zaostriňte nítkový križ.
4. Skontrolujte smer oboch priezorov na ďalekohľade, či sa zhoduje so smerom nítkového križa.
5. Ešte skôr než budete prístroj ďalej používať, uistite sa, že kryt pre obidve rozhrania USB je dobre uzatvorený.

7.5 Ovládacie panel

Ovládacie panel obsahuje spolu 5 tlačidiel s vytlačenými symbolmi a obrazovku citlivú na dotyk (Touchscreen), ktorá slúži na interaktívnu obsluhu.

7.5.1 Funkčné tlačidlá

Funkčné tlačidlá slúžia na všeobecnú obsluhu.

Zapnutie alebo vypnutie prístroja.
Zapnutie, prípadne vypnutie podsvietenia.
Vývolanie ponuky FNC pre podporované nastavenia.
Prerušenie alebo ukončenie všetkých aktívnych funkcií a návrat na úvodné menu.
Vývolanie pomocníka k aktuálnemu zobrazeniu.

7.5.2 Veľkosť dotykové obrazovky

Veľkosť farebného displeja citlivého na dotyk (Touchscreen) je cca 74 x 56 mm (2,9 x 2,2 in), s rozlišením spolu 320 x 240 pix.
7.5.3 Rozdelenie dotykovej obrazovky

Dotyková obrazovka je na účely obsluhy rozdelená príp. informáciou pre používateľa na viaceré oblasti.

1 Riadok s inštrukciami zobrazuje, čo treba urobiť
2 Stavový riadok pre akumulátor a Laser-pointer
3 Zobrazenie času a dátumu a ich zadávanie
4 Hierarchia úrovní ponuky
5 Označenia dátových polí v oblasti 6
6 Dátové polia
7 Podporované nákresy rozmerov
8 Riadok s až 5 "softvérovými tlačidlami"

7.5.4 Dotyková obrazovka - numerická klávesnica

Ak je potrebné zadávať číselné údaje, je automaticky daná k dispozícii príslušná klávesnica na displeji.
Klávesnica je rozdelená podľa nasledujúceho znázornenia.
7.5.5 Dotyková obrazovka - alfanumerická klávesnica

Ak je potrebné zadávať alfanumerické údaje, je automaticky daná k dispozícii príslušná klávesnica na displeji. Klávesnica je rozdelená podľa nasledujúceho znázornenia.

<table>
<thead>
<tr>
<th>Zadávanie Projekt</th>
<th>14/06/11 13:27</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 + - 4 5 6</td>
<td>Zruš ABC abc 123 OK</td>
</tr>
</tbody>
</table>

| Prerušenie a návrat na predchádzajúce zobrazenie. |
| Potvrdenie a prevzatie zadaní. |
| Posunutie miesta zadávania vstupu doľava. |
| Posunutie miesta zadávania vstupu doprava. |
| Vymazanie znaku naľavo od miesta zadávania vstupu. Ak nie je naľavo žiadny znak, vymaže sa zvýraznený znak. |

7.5.6 Dotyková obrazovka - všeobecné ovládacie prvky

<table>
<thead>
<tr>
<th>Správca dát</th>
<th>Tlačidlo aplikácie / programu - na spustenie programu alebo funkcie.</th>
</tr>
</thead>
<tbody>
<tr>
<td>19° 08' 50"</td>
<td>Tlačidlo na priame zadávanie číselných údajov, vrátane znamienka a desatiných miest.</td>
</tr>
<tr>
<td>RAF 76...</td>
<td>Tlačidlo na priame zadanie alfanumerických znakov, vrátane písania veľkých a malých písmen.</td>
</tr>
</tbody>
</table>
Výber zo zoznamu. Tieto zoznamy môžu obsahovať číselné alebo alfanumerické hodnoty, ako aj nastavenia.

Takzvaná "Ponuka Drop Down". Vo väčšine prípadov sa tu otvoria maximálne tri voľby na výber nastavení.

Príklad tlačidla pre operáciu v najspodnejšom riadku zobrazenia.

7.5.7 Indikácia stavu Laserpointer
Prístroj je vybavený funkciou Laserpointer.

| Laserpointer ZAP. | Laserpointer VYP. |

7.5.8 Indikátory stavu akumulátor
Prístroj používa 2 litium-iónové akumulátory, ktoré sa podľa potreby vybijajú súčasne alebo rozdielnym spôsobom.
Prepnutie z jedného akumulátora na druhý sa vykonáva automaticky.
Preto je kedykoľvek možné jeden akumulátor vybrať, napríklad kvôli jeho nabitiu a súčasne s druhým akumulátorom ďalej pracovať, pokiaľ je jeho kapacita dostatočná.

UPOZORNENIE
Čím plnšť je symbol akumulátoru, tým vyšššť je stav jeho nabitia.

7.6 Zapínanie/vypínanie

7.6.1 Zapnutie
Podržte stlačené tlačidlo vypínača na cca 2 sekundy.

UPOZORNENIE
Ak bol prístroj predtým úplne vypnutý, trvá kompletý proces zapnutia cca 20 – 30 sekúnd, s dvomi rôznymi po sebe nasledujúcimi zobrazeniami.

Koniec procesu zapínania bol dosiahnutý vtedy, keď je prístroj nutné uvest'i do horizontálnej polohy (pozrite si kapitolu 7.7.2).
7.6.2 Vypínanie

<table>
<thead>
<tr>
<th>Pokojový stav</th>
<th>Vypnúť</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td></td>
</tr>
</tbody>
</table>

Zruš

Prerušenie a návrat na predchádzajúce zobrazenie.

<table>
<thead>
<tr>
<th>Pokojový stav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
</tr>
</tbody>
</table>

Tachymeter sa úplne vypne.

<table>
<thead>
<tr>
<th>Vypnúť</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
</tr>
</tbody>
</table>

Tachymeter sa spustí na novo. Prápdne neuložené dáta sa prítom stratia.

Stlačte tlačidlo vypínača.

UPOZORNENIE

Pamäťajte prosím na to, že pri vypnutí a opätovnom zapnutí je z bezpečnostných dôvodov ešte raz položená príslušná otázka a prístroj vyžaduje dodatočné potvrdenie zo strany používateľa.

7.7 Postavenie prístroja

7.7.1 Postavenie s bodom na zemi a laserovou olovnicou

Prístroj by vždy mal stáť nad bodom označeným na zemi, aby v prípade odchýlok merania bolo možné opät' využiť dáta stanice alebo body stanice prípadne orientačné body. Prístroj má laserovú olovnicu,ktorá sa po zapnutí prístroja taktiež zapne.

7.7.2 Postavenie prístroja

1. Statív postavte stredom hlavy statívku približne nad príslušný bod na zemi.
2. Prístroj naskrutkujte na statív a zapnite ho.
3. Ručne pohybuje dvomi nohami statívku tak, aby sa laserový lúč nachádzal na značke na zemi. **UPOZORNENIE** Dbajte na to, aby bola hlava statívku približne vodorovne.
5. Zvyšnú odchýlku laserového bodu od značky na zemi vyrovnanie pomocou nastavovacích skrutiek – laserový bod sa teraz musí nachádzať presne na značke na zemi.
6. Predĺžením nôh statívku vyrovnanie krabicovú libelu na trojnožke doprostred. **UPOZORNENIE** Docielite to predĺžením alebo skrátením tej nohy statívku, ktorá leží oproti bublinke, v závislosti od toho, ktorým smerom sa má bublinka pohnúť. Je to iteratívny proces a musí sa prípadne niekoľkokrát opakovať.
8. Aby ste prístroj mohli spustiť, musí sa elektronická "krabicová libela" dať pomocou nastavovacích skrutiek do stredu a musí sa nachádzať v rámci rozumnej presnosti voči stredu. **UPOZORNENIE** Šipky ukazujú smer otáčania nastavovacích skrutiek trojnožky, aby sa bublinky pohybovali smerom do stredu. Ak nastane tento prípad, je možné prístroj zapnúť.
9. Po tom, čo bola nastavená elektronická libela, skontrolujte laserovú olovnicu nad bodom na zemi a prípadne prístroj ešte raz posuňte na tanieri statívú.
10. Zapnite prístroj.

UPOZORNENIE Tlačidlo OK je aktívne vtedy, keď sa bublinky libiel pre dĺžku (Ln) a priečku (Offs) nachádzajú v rámci celkového sklonu 45°.

7.7.3 Postavenie nad rúrky a pomocou laserovej olovnice

Body na zemi sú často vyznačené rúrkami. V tom prípade mierí laserová olovnica do rúrky, bez vizuálneho kontaktu.

Aby bol laserový bod viditeľný, položte na rúrku papier, fóliu alebo iný slabо prieahkaný materiál.

7.8 Aplikácia Teodolit

V aplikácii s názvom Teodolit sú k dispozícii základné funkcie teodolitu, na nastavenie odčítavania Hu na kruhu.
7.8.1 Nastavenie zobrazenia vodorovného kruhu
Odčítavanie z vodorovného kruhu sa zastavi, zacieli sa na nový cieľ a odčítavanie z kruhu sa potom opáť spustí.

7.8.2 Manuálne zadanie odčítavania z kruhu
Akékoľvek lubovoľné odčítavanie z kruhu sa dá v každej pozícii zadať aj manuálne.
7.8.3 Nastavenie odčítavania z kruhu na nulu

Voľbou Hu "nula" sa dá odčítavanie z vodorovného kruhu jednoduchým a rýchlym spôsobom nastaviť na "nulu".

7.8.4 Indikácia zvislého sklonu

Nastavenie odčítavania zo zvislého kruhu sa dá prepínať medzi zobrazením stupňov a percent.

UPOZORNENIE

Zobrazenie v percentách je aktivné len pre toto zobrazenie.

Sklony tak možno merat', resp. vyrovnať v %.
Zvolte úlohu

<table>
<thead>
<tr>
<th>Úvodná ponuka</th>
<th>Teod</th>
<th>%</th>
<th>Mer</th>
<th>Aplik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu</td>
<td>355° 40' 05"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vu</td>
<td>2.225%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>4.473 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepnutie zobrazenia vertikálneho uhla medzi stupňami a %.

8. Nastavenia systému

8.1 Konfigurácia

V ponuke pre programy sa pomocou tlačidla Konfigurácia dá preskočiť na konfiguračnú ponuku.

Ponuka aplikácie

14/06/11 13:26

<table>
<thead>
<tr>
<th>Aplik</th>
<th>Vôbec aplikácie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bod na linku</td>
</tr>
<tr>
<td></td>
<td>Správca dát</td>
</tr>
<tr>
<td></td>
<td>Konfigurácia</td>
</tr>
</tbody>
</table>

Návrat na predchádzajúce zobrazenie.

Konfigurácia

15/06/11 11:26

<table>
<thead>
<tr>
<th>Aplik</th>
<th>Konfigurácia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nastavenie</td>
</tr>
<tr>
<td></td>
<td>Kalibrácia</td>
</tr>
<tr>
<td></td>
<td>Systém info</td>
</tr>
<tr>
<td></td>
<td>Obrazenie kalibrácia</td>
</tr>
</tbody>
</table>

Prerušenie a návrat na predchádzajúce zobrazenie.

8.1.1 Nastavenia

Nastavenia pre uhol a vzdialenosť, uhlové rozlišenie a nastavenie zvislého kruhu na nulo.
Nastavenia kritérií automatického vypnutia a tónu pípnutia, ako aj voľba jazyka.

Možné nastavenia

<table>
<thead>
<tr>
<th>Jednotky uhlov</th>
<th>SMS (° ° ″)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gon</td>
</tr>
<tr>
<td>Uhlové rozlišenie</td>
<td>1″, 5″, 10″</td>
</tr>
<tr>
<td></td>
<td>5cc, 10cc, 20cc</td>
</tr>
<tr>
<td>Vu nula</td>
<td>Zenit</td>
</tr>
<tr>
<td></td>
<td>Horizont</td>
</tr>
<tr>
<td>Vzdialenost'</td>
<td>Meter</td>
</tr>
<tr>
<td></td>
<td>US Feet (americká stopa), Int Feet (medzinárodná stopa), Ft/in-1/8, Ft/in-1/16</td>
</tr>
<tr>
<td>Decimálny formát</td>
<td>1000.0</td>
</tr>
<tr>
<td></td>
<td>1000,0</td>
</tr>
<tr>
<td>Auto zap./vyp.</td>
<td>Zap.</td>
</tr>
<tr>
<td></td>
<td>Aktivuje režim vypnutia po určitom čase. Po cca 5 minútach sa prístroj prepne do pokojového stavu.</td>
</tr>
<tr>
<td></td>
<td>Vyp.</td>
</tr>
<tr>
<td></td>
<td>Vypne režim vypínania po určitom čase.</td>
</tr>
</tbody>
</table>
8.2 Čas a dátum
Prístroj má elektronické systémové hodiny, ktoré dokážu zobrazovať čas a dátum v rôznych formátoch, ako aj príslušných časových zónach a taktiež dokážu zohľadniť posun pri prechode na letný čas.

Zvolte úlohu

<table>
<thead>
<tr>
<th>Aplik</th>
<th>Úvodná ponuka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu</td>
<td>355° 42' 00"</td>
</tr>
<tr>
<td>Vu</td>
<td>88° 43' 24"</td>
</tr>
<tr>
<td>Hv</td>
<td>4.473 m</td>
</tr>
</tbody>
</table>

Teod V% Mer Aplik

Zadávanie času a dátumu v nasledujúcom zobrazení

<table>
<thead>
<tr>
<th>Zmeňte dátum/čas</th>
<th>14/06/11 13:30</th>
</tr>
</thead>
</table>

Aplik > Správa dát/čas

Čas | 13:30 | 123 |
Datum | 14/06/11 | 123 |
Formát času | 24 hodín |
Formát dátumu | DD/MM/RR |

Čas zóna OK

Vyvolanie ponuky na zadávanie dátumu a času.

28/04/10 11:35

Vyvolanie zadania časovej zóny a automatického prepínania zimného a letného času.

OK

Uloženie zobrazenej hodnoty a návrat späť na predchádzajúce zobrazenie.
Zmenšte časovú zónu

Zruš

Časová zóna (GMT-08:00) ...

Auto letný čas Zap

OK

Prerušenie a návrat na predchádzajúce zobrazenie.

Uloženie zobrazenej hodnoty a návrat späť na predchádzajúce zobrazenie.

Možné nastavenia

<table>
<thead>
<tr>
<th>Formáty času</th>
<th>12-hodinový</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24-hodinový</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formáty dátumu</th>
<th>DD/MM/RR = deň/mesiac/rok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MM/DD/RR = mesiac/deň/rok</td>
</tr>
<tr>
<td></td>
<td>RR/MM/DD = rok/mesiac/deň</td>
</tr>
</tbody>
</table>

| Časové zóny | GMT -12 hod. až GMT +13 hod. Časové zóny je možné rozpoznať podľa hlavných miest. |

<table>
<thead>
<tr>
<th>Automatický letný čas</th>
<th>Zap.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vyp.</td>
</tr>
</tbody>
</table>

9. Ponuka funkcií (FNC)

Funkčným tlačidlom FNC sa vyvoláva ponuka funkcií. Toto vyvolanie ponuky je v systéme k dispozícii kedykoľvek.

Zvolte funkciu

Zruš

<table>
<thead>
<tr>
<th>Nav svetlo: Vyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser: Zap</td>
</tr>
<tr>
<td>Jas: 5 / 5</td>
</tr>
<tr>
<td>Libela</td>
</tr>
</tbody>
</table>

OK

Ponuka na zadávanie rôznych atmosférických údajov.

Prevzatie nastavenia a ukončenie ponuky FNC.
9.1 Navádzacie svetlo

Zvolte funkciu

Nav svetlo: Vyp
Laser: Zap
Jas: 5/5
Libela

Zapnutie alebo vypnutie navádzacieho svetla, ako aj zmena frekvencie blikania (sekvencia vypnutá, 1 (pomaly) až 4 (rýchlo)).

9.2 Laserpointer

Zvolte funkciu

Nav svetlo: Vyp
Laser: Zap
Jas: 5/5
Libela

Zapnutie alebo vypnutie laserového ukazovateľa (Laserpointer).

9.3 Osvetlenie displeja

Zvolte funkciu

Nav svetlo: Vyp
Laser: Zap
Jas: 5/5
Libela

Zapnutie alebo vypnutie osvetlenia displeja, ako aj zmena intenzity. Čím bude jas vyšší, tým viac energie sa spotrebuje.

9.4 Elektronická libela

Pozrite si kapitolu 7.7.1 Postavenie s bodom na zemi a laserovou olovnicou.

9.5 Atmosférické korekcie

Prístroj používa na meranie vzdialenosti viditeľný laser.
V zásade platí, že keď svetlo prechádza vzduchom, znižuje sa rýchlosť svetla vplyvom hustoty vzduchu.
V závislosti od hustoty vzduchu sa tieto vplyvy menia.
Hustota vzduchu závisí v podstatnej miere od tlaku a teploty vzduchu, v podstatne nižšej miere však ešte aj od vlhkosti vzduchu.
Ak majú byť vzdušná dielňa zmerané presne, je bezpodmienkovo potrebné zohľadniť atmosférické vplyvy.
Prístroj vypočítava a koriguje zodpovedajúce vzdialenosti automaticky, na vykonanie tohto úkona je však potrebné zadať teplotu a tlak okolitého vzduchu.
Tieto parametre sa môžu zadávať v rôznych jednotkách.

9.5.1 Korekcia atmosférických vplyvov

Zvolte funkciu

<table>
<thead>
<tr>
<th>ppm</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ppm)</td>
<td></td>
</tr>
</tbody>
</table>

1. Vyberte si volbu ppm.

Nastavenie ppm

<table>
<thead>
<tr>
<th>Jedn. tlaku</th>
<th>mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedn. tepl.</td>
<td>°C</td>
</tr>
<tr>
<td>Tlak</td>
<td>1013 mbar</td>
</tr>
<tr>
<td>Teplota</td>
<td>20.0 °C</td>
</tr>
<tr>
<td>ppm</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zruš</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Zvolte zodpovedajúce jednotky a zadajte tlak a teplotu.

Nastavené atmosférické hodnoty a ich jednotky

<table>
<thead>
<tr>
<th>Jednotka (tlak)</th>
<th>hPa</th>
<th>mmHg</th>
<th>mbar</th>
<th>inHg</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednotka (teplota)</td>
<td>°C</td>
<td>°F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ponuka na zadávanie rôznych atmosférických údajov.
Prevzatie nastavenia a ukončenie ponuky FNC.

Zruš
Prerušenie a návrat na predchádzajúce zobrazenie.
10. Funkcie k aplikáciám

10.1 Projekty
Predtým než sa má vyvoláť prostredníctvom tachymetra nejaká aplikácia, musí byť otvorený alebo vybraný nejaký projekt.
Ak je dostupný aspoň jeden projekt, zobrazí sa výber spomienkov projektov, ak nie je dostupný žiadny projekt, pokračuje sa hneď ďalej k vytvoreniu nového projektu.
Všetky dáta budú priradené k aktívnomu projektu a zodpovedajúco uložené.

10.1.1 Zobrazenie aktívneho projektu
Ak je v pamäti dostupný už jeden alebo viaceré projekty a jeden z nich sa používa ako aktívny projekt, musí sa projekt pri každom novom spustení aplikácie potvrdiť, vybrať iný projekt alebo je potrebné vytvoriť nový projekt.

<table>
<thead>
<tr>
<th>Podr. projektu</th>
<th>14/06/11 14:13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projekt</td>
<td>Layout_New_Bldg</td>
</tr>
<tr>
<td>Dátum</td>
<td>18/02/11</td>
</tr>
<tr>
<td>Čas</td>
<td>13:29</td>
</tr>
<tr>
<td>Poč. bodov</td>
<td>362</td>
</tr>
<tr>
<td>Počet Stan</td>
<td>97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Späť</th>
<th>Návрат na predchádzajúce zobrazenie.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nové</td>
<td>Výber alebo vytvorenie nového projektu.</td>
</tr>
<tr>
<td>OK</td>
<td>Potvrdenie zobrazeného projektu ako aktuálneho projektu.</td>
</tr>
</tbody>
</table>

10.1.2 Výber projektu

<table>
<thead>
<tr>
<th>Zvoľte projekt</th>
<th>14/06/11 14:12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation</td>
<td></td>
</tr>
<tr>
<td>Layout_New_Bldg</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Basement_Parking Garage_1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Späť</th>
<th>Náhľad</th>
<th>Nové</th>
<th>OK</th>
</tr>
</thead>
</table>

Vyberte si jeden zo zobrazených projektov, ktorý sa má nastaviť ako aktuálny projekt.

10.1.3 Vytvorenie nového projektu
Všetky dáta sa vždy priraďujú k nejakému projektu.
Nový projekt by sa teda mal vytvárať vtedy, keď sa majú dáta nanovo priradiť a tieto dáta majú byť priradené iba tu.
Pri vytváraní projektu sa súčasne ukladá dátum a čas vytvorenia a počet v ďom obsiahnutých staníc, ako aj počet bodov, nastavený na nulu.
UPOZORNENIE
Pri chybnom zadaní sa zobrazí hlásenie o chybe, ktoré je zároveň požiadavkou na opätovné zadanie.

10.1.4 Informácia o projekte
Informáciou o projektne sa zobrazuje aktuálny stav projektu, napríklad dátum vytvorenia a čas, počet staníc a celkový počet uložených bodov.

10.2 Umiestnenie stanice a orientácia
Tejto kapitole, prosím, venujte zvýšenú pozornosť.
Nastavenie stanice je jednou z najdôležitejších úloh pri používaní tachymetra a vyžaduje si veľkú dávkú starostlivosti.
Najjednoduchšou a najbezpečnejšou metódou je prítom postavenie nad bodom na zemi a použitie istého cieľového bodu.
Možnosti "Voľného umiestnenia" ponúkajú viac flexibility, skrývajú však riziko, že nebudú zistené chyby, prípadne sa chyby môžu prenášať ďalej a podobne.
Okrum toho si tieto možnosti vyžadujú o niečo viac skúsenosti pri voľbe pozície prístroja, vzhľadom k referenčným bodom, ktoré sa berú do úvahy pri vypočítaní pozície.

UPOZORNENIE
Úvedomte si prosím, že: Ak je stanica nesprávna alebo zlá, bude všetko, čo je následne merané od tejto stanice, nesprávne – a to sú také práce ako merania, vytýčenia, usporiadanie a podobne.
10.2.1 Prehľad

V určitých aplikáciách, kde sa používajú absolútné pozície, je po fyzickom postavení prístroja, prípadne postavení stanice, nutné aj určiť pozíciu stanice prostredníctvom dát, pretože v aplikácii je potrebné vedieť, na akej pozícii stojí prístroj.

Túto pozíciu možno definovať buď prostredníctvom súradníc, alebo prostredníctvom postavenia stavebnej osi.

Tento proces sa nazýva **Nastavenie stanice**.

Ďalej je potrebné, okrem pozície prístroja, vedieť aj to, v akom smere ležia referenčné osi, prípadne poznáť smer hlavnej osi.

Hlavná os leží pri súradnicach vo váčsine prípadov smerom na sever alebo pri stavebných osiach je to smer stavebnej osi.

Je dôležité poznáť smer referenčných osí, pretože vodorovný kruh so stupnicou sa svojou "nulovou značkou" otáča akoby paralelné alebo v smere k hlavnej osi.

Tento proces sa nazýva **Orientácia**.

Možnosti na určenie stanice sú dostupné akoby v dvoch systémoch.

Buď v systéme stavebných osí, kde sú dostupné alebo boli zadané dížky a vzdialenosti v pravom uhle, alebo v pravouhлом systéme súradnic.

Systém stanice alebo merania sa určuje pri definovaní stanice.

4 možnosti určenia stanice s prístrojom

<table>
<thead>
<tr>
<th>Zruš</th>
<th>Prerušenie a návrat na predchádzajúce zobrazenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Potvrdenie výberu a pokračovanie ďalej na určenie stanice</td>
</tr>
</tbody>
</table>

UPOZORNENIE

Proces nastavenia stanice zahŕňa vždy stanovenie pozície a orientácie.

Keď sa spúšťa niektorá zo štyroch aplikácií, ako napríklad Horizontálne vytýčenie, Vertikálne vytýčenie, Premeranie, Meranie a zaznamenanie, musí sa určiť stanica a orientácia.

Ak sa má dodatočne pracovať ešte aj s výškami, to znamená, že sa majú určiť alebo vytýčiť cieľové výšky, je ešte nutné určiť výšku stredu ďalekohľadu na prístroji.
Zhrnutie možností postavenia stanice (6 volieb)

<table>
<thead>
<tr>
<th>Výšky</th>
<th>Zap, Vyp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nastavenie, či sa majú počítať alebo zobrazovať výšky.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syst. bod.</th>
<th>Stavebná os</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manuálne zadanie údajov, ktoré sa vzťahujú na stavebnú os (dlžka, prieč.).</td>
</tr>
</tbody>
</table>

| Súrad / Plán | Používanie súradníct alebo plánu, prípadne grafických dát CAD. |

<table>
<thead>
<tr>
<th>Postavenie stanice</th>
<th>Nad bod.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stanica s prístrojom sa nachádza nad bodom s označenou a známanou pozíciou.</td>
</tr>
</tbody>
</table>

| Voľná stan. | Stanica s prístrojom stojí nezávisle. Posícia stanice sa musí zmerať, prípadne vypočítať z dát merania. |

10.2.2 Nastavenie stanice nad bodom, s použitím stavebných osí

Mnoho stavebných prvkov sa svojím vymeraním alebo opisom pozície vzťahuje na stavebné osi uvedené v pláne.
Pomocou tachymetra môžete používať aj stavebné osi a im prislúchajúce vymerania.

Zvolte typ stanice

<table>
<thead>
<tr>
<th>Prvok</th>
<th>Nastavenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výšky</td>
<td>Vyp</td>
</tr>
<tr>
<td>Bod systém</td>
<td>Staveb Os</td>
</tr>
<tr>
<td>Stan nastav.</td>
<td>Nad bodom</td>
</tr>
</tbody>
</table>

Zruš
OK

Prerušenie a návrat na predchádzajúce zobrazenie.

Potvrdenie výberu a pokračovanie dalej na určenie stanice.

Postavenie prístroja nad bodom na stavebnej osi

Prístroj sa postaví nad bod označený na stavebnej osi, od ktorého sú dobre viditeľné body alebo prvky, ktoré treba merat'.
Obzvlášť je potrebné dbať na bezpečné a pevné postavenie pomocou statív.

Printed: 07.07.2013 | Doc-Nr: PUB / 5070144 / 000 / 00
Pozícia prístroja P0 a orientačný bod P1 ležia na jednej spoločnej stavebnej osi.

10.2.2.1 Zadávanie bodu stanice

Pre bod stanice, prípadne stanovisko prístroja, je potrebné zadať označenie na jednoznačnú identifikáciu, pretože kvôli ukladaniu dát stanice je potrebne jednoznačné označenie.

10.2.2.2 Zadávanie cieľového bodu

Pre orientačný bod sa musí zadať označenie slúžiace na jednoznačnú identifikáciu pri ukladaní dát.

Zadanie názvu stanice.

Návрат na predchádzajúce zobrazenie.

Potvrdenie zadania stanice a pokračovanie ďalej s orientáciou.
Po zadání orientačného bodu musí nasledovať "meranie" k orientačnému bodu. Na vykonanie tohto úkonu je potrebné podľa možnosti čo najpresnejšie zacíliť na orientačný bod alebo cieľový bod.

10.2.2.3 Nastavenie stanice so stavebnou osou

Po vykonaní merania uhlov kvôli orientácii je stanica bezprostredne potom nastavená.

UPOZORNENIE
Stanica sa vždy uloží v internej pamäti. Ak sa v pamäti už názov stanice raz nachádza, je potrebné na tomto mieste stanicu premenovať, prípadne zadať nový názov stanice.

Po nastavení stanice sa bude pokračovať s vlastnou zvolenou hlavnou aplikáciou.

10.2.2.4 Posunutie a rotácia osi

Posunutie osí
Počiatok bod osi sa dá presunúť, ak chcete použiť inú referenciu ako počiatok systému súradnic. Ak je zadaná hodnota kládzná, posunie sa os dopredu, ak je záporná, posunie sa smerom dozadu. Počiatok bod bude pri kladnej hodnote posunutý doprava, pri zápornej hodnote smerom doľava.

Rotácia (otočenie) osi
Smerovanie osi sa dá otočiť okolo počiatocného bodu. Pri zadání kladných hodnôt sa os otočí v smere hodinových ručičiek, pri zadaní záporných hodnôt sa otočí proti smeru hodinových ručičiek.
Po nastavení stanice sa bude pokračovať s vlastnou zvolenou hlavou aplikáciou.

10.2.3 Voľné umiestnenie so stavebnými osami

Voľné umiestnenie umožňuje určiť pozíciu stanice meraniami uhlov a vzdialenosti k dvom referenčným bodom.
Možnosť voľného postavenia sa používa vtedy, keď nie je možné postavenie nad jedným bodom na stavebnej osi, alebo keď je znemožnený výhľad na merané pozície.
Pri voľnom postavení, prípadne voľnom umiestnení, je potrebné pracovať mimorádne starostlivo. Na určenie stanice sa vykonávajú dodatočné merania a dodatočné merania nesú vždy so sebou riziko chýb.
Okrem toho je potrebné dávať pozor na to, aby geometrické pomery poskytovali použiteľnú pozíciu. Prístroj v zásade kontroluje geometrické pomery, aby vypočítal použiteľnú pozíciu a v kritických prípadoch vydá prístroj varovanie.
Je však povinnosťou používateľa pracovať s mimorádne zvýšenou pozornosťou – pretože softvérová nedokáže rozpoznávať všetko.
Pozícia prístroja P0 leží mimo stavebnej osi. Meranie k prvému referenčnému bodu P1 určuje začiatok stavebnej osi, zatiaľ čo druhý referenčný bod P2 zaznamenáva do systému prístroja smer stavebnej osi.
S nasledujúcimi aplikáciami sa počítanie dlžkových hodnôt vzťahuje na smer stavebnej osi s hodnotou 0,000 pri prvom referenčnom bode.
Priečne hodnoty sa chápu ako vzdialenosť (v pravom uhle) k stavebnej osi.

10.2.3.1 Meranie k prvému referenčnému bodu na stavebnej osi

<table>
<thead>
<tr>
<th>Zmerný bod 1</th>
<th>14/06/11 15:16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref Bod 1</td>
<td>R1 1/0,02 km</td>
</tr>
<tr>
<td>Hu</td>
<td>354° 25' 56"</td>
</tr>
<tr>
<td>Vu</td>
<td>73° 45' 11"</td>
</tr>
<tr>
<td>Hv</td>
<td>---</td>
</tr>
</tbody>
</table>

- **Späť**
- **Mer**
- **Dalšie**

10.2.3.2 Meranie k druhému referenčnému bodu

<table>
<thead>
<tr>
<th>Zvolte ref.bod 2</th>
<th>29/06/11 04:39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref bod 2</td>
<td>20</td>
</tr>
<tr>
<td>Hu</td>
<td>155° 35' 41"</td>
</tr>
<tr>
<td>Vu</td>
<td>73° 05' 53"</td>
</tr>
<tr>
<td>Hv</td>
<td>3.098 m</td>
</tr>
</tbody>
</table>

- **Späť**
- **Kon.vzd.**
- **Mer**
- **Dalej**
- **Kontr. V**

Návrat na predchádzajúce zobrazenie.
Zmeranie uhla a vzdialenosti.
Pokračovanie ďalej na nastavenie stanice.
 Kontrola vzdialenosťí medzi referenčnými bodmi.
Pokračujte kontrolou vzdialenosti medzi stanicou a orientačným bodom, tak ako je to opísané v príslušných kapitolách.

10.2.3.3 Nastavenie stanice

Po vykonaní merania uhlov kvôli orientácii je stanica bezprostredne potom nastavená.

UPOZORNENIE

Stanica sa vždy uloží v internej pamäti. Ak sa v pamäti už názov stanice raz nachádza, je potrebné na tomto mieste stanicu premenovať, prípadne zadať nový názov stanice.

Pokračujte ďalej s rotáciou a posunutím osi tak, ako je opísané v príslušných kapitolách.

10.2.4 Nastavenie stanice nad bodom, s použitím súradníck

Na mnohých stavbách sú dostupné body už z vymerovania, ktoré sú dostupné aj so súradnicami alebo sú dostupné stavebné prvky, stavebné osi, základy a podobne, ktoré sú opísané pomocou súradníck.

V takomto prípade môže byť v postavení stanice rozhodujúce to, či sa má pracovať v systéme súradníck alebo stavebných osí.

Postavenie prístroja nad bodom so súradnicami

Prístroj sa postavi nad bod označený na zemi, ktorého pozícia je udaná súradnicami a merané body alebo prvky sú dobre viditeľné.

Obzvlášť je potrebné dbať na bezpečné a pevné postavenie pomocou statív.
Pozícia prístroja sa nachádza na súradnicovom bode P0 a cieli sa (pre orientáciu) na druhý súradnicový bod P1. Prístroj vypočítava polohu v rámci systému súradníck. Na lepšiu identifikáciu orientačného bodu sa dá zmerať vzdialenosť a porovnať so súradnicami.

UPOZORNENIE
Tak je väčšia istota správneho identifikovania orientačného bodu. Ak má súradnicový bod P0 aj svoju výšku, použije sa táto hodnota najskôr ako výška stanice. Predtým než stanicu definitívne nastavíte, je možné výšku stanice kedykoľvek nanovo určiť alebo zmeniť.

Orientačný bod je rozhodujúci pre správne vypočítanie smeru a mal by sa preto vyberať a merat' mimoúrade starostlivo.

10.2.4.1 Zadanie pozície stanice
Pre bod stanice, prípadne stanovisko prístroja je potrebné zadáť označenie s jednoznačnou identifikáciou a k tomuto označeniu musí prislúchať súradnicová pozícia. To znamená, že bod stanice môže byť v projekte dostupný ako uložený bod, alebo sa súradnice musia zadáť manuálne.

Po zadании názvu pre bod stanice sa vyhľadajú príslušné súradnice alebo pozícia z uložených grafických dát. Ak pod zadaným názvom nie sú dostupné žiadne dáta bodov, je potrebné zadať súradnice manuálne.

10.2.4.2 Zadávanie cieľového bodu
Pre cieľový bod je potrebné zadať označenie s jednoznačným identifikátorom a k tomuto označeniu musí prislúchať pozícia súradnice.
Cieľový bod musí byť v projekte dostupný ako uložený bod alebo je potrebné zadať súradnice manuálne.

Zadávanie orient. bodu

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>R77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ori Bod</td>
<td>R78</td>
</tr>
</tbody>
</table>

UPOZORNENIE

Pри zadaní názvu pre orientačný bod sú príslušné súradnice alebo pozícia vyhľadané z uložených grafických dát. V prípade, že pod týmto názvom nie sú dostupné žiadne dáta bodov, je potrebné zadatiť súradnice manuálne.

Doplnková (voliteľná) kontrola vzdialenosti medzi stanicou a orientačným bodom

Po zadaní cieľového bodu sa musí na tento bod presne zacietkoť kvôli meraniu orientácie. Po meraniu orientácie je k dispozícii voľba kontroly vzdialenosti medzi stanicou a orientáciou. Je to pomocou na kontrolu správneho výberu bodu a správneho zacielenia na tento bod a udáva, ako sa nameraná vzdialenosť zhoduje so vzdialenosťou vypočítanou zo súradníc.

Preverenie vzdialeností

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>R77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ori Bod</td>
<td>R78</td>
</tr>
<tr>
<td>dHv</td>
<td>3.877 m</td>
</tr>
</tbody>
</table>

Zobrazenie dHv je rozdielom medzi nameranou vzdialenosťou a vzdialenosťou vypočítanou zo súradníc.

Stlačením tlačidla Ďalej môžete skontrolovat ďalšie body. Na displeji sa, dodatočne k hodnote dHv, zobrazí aj hodnota pre dHu, čo je rozdiel nameraného horizontálneho uhla a horizontálneho uhlia vypočítaného zo súradníc.

10.2.4.3 Nastavenie stanice

Stanica sa vždy uloží v internej pamäti. Ak sa v pamäti už názov stanice raz nachádza, je potrebné na tomto mieste stanicu premenovať, prípadne zadať nový názov stanice.
10.2.5 Volné umiestnenie so súradnicami

Volné umiestnenie umožňuje určiť pozíciu stanice meraniami uhlov a vzdialenosti k dvom referenčným bodom.

Možnosť volného postavenia sa používa vtedy, keď nie je možné postavenie nad jedným bodom na stavebnej osi, alebo keď je znemožnený výhľad na merané pozície.

Pri voľnom postavení, prípadne voľnom umiestnení, je potrebné pracovať mimoriadne starostlivo. Na určenie stanice sa vykonávajú dodatočné merania a dodatočné merania nesú vždy so sebou riziko chýb.

Okrem toho je potrebné dávať pozor na to, aby geometrické pomery na konkrétom mieste poskytovali použiteľnú poziciu.

Prístroj v zásade kontroluje geometrické pomery, aby vypočítal použiteľnú pozíciu a v kritických prípadoch vydá prístroj varovanie.

Je však povinnosťou používateľa pracovať s mimoriadne zvýšenou pozornosťou – pretože softvér nedokáže rozpoznávať všetko.

Zvolte typ stanice

<table>
<thead>
<tr>
<th>Výšky</th>
<th>Vyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod systém</td>
<td>Súrad/plán</td>
</tr>
<tr>
<td>Stan nastav.</td>
<td>Volná Stan</td>
</tr>
</tbody>
</table>

Volné postavenie prístroja so súradnicami

Na volné postavenie by ste mali vyhľadať bod na prehľadnom mieste, tak, aby bol možný dobrý výhľad na dva súradnicové body a aby súčasne bol podľa možnosti zaručený dobrý výhľad k meraným bodom.

V každom prípade je vhodné urobiť si najskôr značku na zemi a potom prístroj postaviť nad touto značkou.

Tak vždy existuje možnosť dodatočnej kontroly pozície a šanca na odhalenie prípadných nepresností.
Pozícia prístroja sa nachádza na voľnom bode P_0 a následne sa meria uhol a vzdialenosť k dvom referenčným bodom P_1 a P_2, ktoré majú súradnice. Následne sa pozícia prístroja P_0 určí z meraní k dvom referenčným bodom.

UPOZORNENIE
Ak sú obidva body, alebo iba jeden referenčný bod, dostupné aj s výškou, automaticky sa vypočíta aj výška stanice. Predtým než staniciu definitívne nastavíte, je možné výšku stanice kedykoľvek nanovo určiť alebo zmeniť.

10.2.5.1 Meranie k prvemu referenčnému bodu

<table>
<thead>
<tr>
<th>Zmerajte Ref Bod 1</th>
<th>14/06/11 15:16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref Bod 1</td>
<td>$R_1^{B_O}$</td>
</tr>
<tr>
<td>Hu</td>
<td>354° 25' 56"</td>
</tr>
<tr>
<td>Vu</td>
<td>73° 45' 11"</td>
</tr>
<tr>
<td>Hv</td>
<td>---</td>
</tr>
</tbody>
</table>

- **Štart**: Zadanie názvu orientačného bodu.
- **Spät**: Návrat na predchádzajúce zobrazenie.
- **Mer**: Zmerať uhol a vzdialenosť.
- **Dalsie**: Pokračovanie ďalej na meranie k druhému referenčnému bodu.

Príslušné súradnice alebo pozícia sa vyhľadá z uložených grafických dát. V prípade, že pod týmto názvom nie sú dostupné žiadne dáta bodov je potrebné zadať súradnice manuálne.
10.2.5.2 Meranie k druhému referenčnému bodu

Zvolte ref. bod 2

Aplikatívny vstúpenie/Potvrdenie stanice

Ref bod 2

Hu 155° 35' 41"
Vu 73° 05' 53"
Hv 3.098 m

Späť Kon. vzd. Mer Dalej

Návrat na meranie k prvému referenčnému bodu.

Zmeranie uhla a vzdialenosti.

Pokračovanie ďalej na nastavenie stanice.

Kontrola vzdialenosti medzi referenčnými bodmi.

Pokračujte kontrolou vzdialenosti medzi stanicou a orientačným bodom, tak ako je to opísané v príslušných kapitolách.

10.2.5.3 Nastavenie stanice

Stаницa sa vždy uloží v internej pamäti. Ak sa v pamäti už názov stanice raz nachádza, je potrebné na tomto mieste stanicu premenovať, prípadne zadáť nový názov stanice.

Nastavte stanicu

Aplikatívny vstúpenie/PNastavenie stanicou

Stan ID Sta12
Ori Bod 27

Späť Náhľad Nastav

Zadanie názvu stanice.

Návrat na orientačné meranie.

Zobrazenie údajov o stanicí.

Nastavenie stanice.

10.3 Nastavenie výšky

Ak sa má dodatočné (okrem nastavenia pozície a orientácie) pracovať ešte aj s výškami, to znamená, že sa majú určiť alebo vytýčiť cieľové výšky, je ešte nutné určiť výšku stredu dalekohľadu na prístroji.

Výšku možno nastaviť dvomi rôznymi spôsobmi:

1. Pri známej výške bodu na zemi sa zmeria výška prístroja – obidve hodnoty spolu udávajú výšku stredu dalekohľadu.
2. K bodu alebo značke so známovej výškou sa vykoná zmeranie uhla a vzdialenosť a tak sa "meraním" určí alebo späťne prenesie výška stredu dalekohľadu.

10.3.1 Nastavenie stanice so stavebnou osou (voľba: Výška "zapnutá")

Ak je zapnutá volba s výškami, zobrazí sa vo vyobrazení nastavenia stanice aj výška stanice. Túto môžete potvrdiť alebo určiť nanovo.
Určenie novej výšky stanice
Určenie výšky stanice sa dá vykonať dvomi rôznymi spôsobmi:

1. Priamym manuálnym zadaním výšky stanice.
2. Určením výšky stanice manuálnym zadaním výšky z výškovej značky a zmeraním V-uhla a vzdialenosti.

Stanovte výšku stanice

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>Sta</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.príslušná výška</td>
<td>0.400 m</td>
</tr>
<tr>
<td>v.rfl</td>
<td>0.500 m</td>
</tr>
</tbody>
</table>

1. Priame manuálne zadanie výšky stanice
Po vybraní volby na nové určenie výšky stanice v predchádzajúcom zobrazení je možné manuálne zadať novú výšku stanice.

Zadávanie refer výšky

v. ref	0.600 m
Vu	73° 45' 34"
v.príslušná výška	0.400 m
v.rfl	0.500 m

2. Určenie výšky stanice zadaním výšky a zmeraním V-uhla a vzdialenosti
Zadaním referenčnej výšky, výšky prístroja a výšky reflektora v spojení s V-uhlom a zmeraním vzdialenosti sa výška stanice akoby spätne prenáša od výškovej značky k stanici. Na to je bezpodmienne potrebné zadať správnu výšku prístroja a reflektora.

Návрат na predchádzajúce zobrazenie.

Manuálne zadaní výšky stanice alebo Meranie k výškovej značke.

Potvrdenie výšky stanice. Pokračovanie ďalej s nastavením stanice.

Prerušenie a návrat na predchádzajúce zobrazenie.

Potvrdenie výšky stanice. Pokračovanie ďalej s nastavením stanice.
Zobrazovanie novej vypočítanej výšky stanice po zmeraní
Po zmeraní uhlov a vzdialenosť sa zobrazí nová vypočítaná výška stanice a dá sa potvrdiť alebo zrušiť.

Nastavte výšku stanice

Nastavenie stanice

UPOZORNENIE
Ak je zapnutá voľba "Výšky", je potrebné nastaviť výšku pre stanicu, alebo musí byť hodnota pre výšku stanice už dostupná.
UPOZORNENIE
Stanica sa vždy uloží v internej pamäti, ak je názov stanice v pamäti už dostupný, je potrebné na tomto mieste stanicu premenovať, prípadne zadať nový názov stanice.

Po nastavení stanice sa bude pokračovať s vlastnou zvolenou hlavnou aplikáciou.

10.3.2 Nastavenie stanice so súradnicami (volba: výška "zapnutá")

Určenie novej výšky stanice
Určenie výšky stanice sa dá vykonať tromi rôznymi spôsobmi:

- Priame manuálne zadanie výšky stanice
- Určením výšky stanice manuálnym zadáním výšky z výškovej značky a zmeraním V-uhla a vzdialenosti
- Určením výšky stanice výberom bodu s výškou z pamäte dát a zmeraním V-uhla a vzdialenosti k tomuto bodu

1. Priame manuálne zadanie výšky stanice
Po vybraní volby na nové určenie výšky stanice v predchádzajúcim zobrazení je možné manuálne zadať novú výšku stanice.

2. Určenie výšky stanice zadaním výšky a zmeraním V-uhla a vzdialenosti
Zadaním referenčnej výšky, výšky prístroja a výšky reflektora v spojení s V-uhlom a zmeraním vzdialenosti sa výška stanice akoby spätne prenásľa od výškovej značky k stanici. Na to je bezpodmienené potrebné zadať správnu výšku prístroja a reflektora.
Zadávanie refer výšky

<table>
<thead>
<tr>
<th>v.ref</th>
<th>0.600 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vu</td>
<td>73° 45' 34"</td>
</tr>
<tr>
<td>v.prír</td>
<td>0.400 m</td>
</tr>
<tr>
<td>v.rfl</td>
<td>0.500 m</td>
</tr>
</tbody>
</table>

Zobrazenie novej vypočítanej výšky stanice po zmeraní
Po zmeraní uhlov a vzdialeností sa zobrazí nová vypočítaná výška stanice a dá sa potvrdiť alebo zrušiť.

Nastavte výšku stanice

<table>
<thead>
<tr>
<th>Stan ID</th>
<th>Sta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stan Výš</td>
<td>-0.654 m</td>
</tr>
<tr>
<td>v.prír</td>
<td>0.400 m</td>
</tr>
<tr>
<td>v.rfl</td>
<td>0.500 m</td>
</tr>
</tbody>
</table>

3. Určenie výšky stanice výberom bodu s výškou z pamäte dát a zmeraním V-uhla a vzdialeností
Zadaním výškového bodu, výšky prístroja a reflektora v spojení s V-uhlom a zmeraním vzdialenosti sa výška stanice akoby spätne prenáša od výškového bodu, prípadne výškovej značky, k stanici. Na to je bezpodmienne potrebné zadať správnu výšku prístroja a reflektora.

Zvolte výškový bod

<table>
<thead>
<tr>
<th>Výš Bod</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.ref</td>
<td>1.000 m</td>
</tr>
<tr>
<td>Vu</td>
<td>73° 45' 22"</td>
</tr>
<tr>
<td>v.prír</td>
<td>0.000 m</td>
</tr>
<tr>
<td>v.rfl</td>
<td>0.500 m</td>
</tr>
</tbody>
</table>

Príslušné súradnice alebo pozícia sa vyhľadá z uložených grafických dát.
V prípade, že pod týmto názvom nie sú dostupné žiadne dáta bodov, je potrebné zadať súradnice manuálne.

Zobrazenie novej vypočítanej výšky stanice po zmeraní

Po zmeraní uhlov a vzdialeností sa zobrazí nová vypočítaná výška stanice a dá sa potvrdiť alebo zrušiť.

- **Sta**: 14/06/11 14:59
- **Stan ID**: Nástav
- **Následovanie**: Nástavenie stanice.

Nastavenie stanice

Ak je zapnutá voľba s výškami, zobrazí sa vo vyobrazení nastavenia stanice aj výška stanice. Túto môžete potvrdiť alebo určiť nanovo.

UPOZORNENIE

Ak je zapnutá voľba "Výšky", je potrebné nastaviť výšku pre stanicu, prípadne musí byť hodnota pre výšku už dostupná. Ak sa nezobrazí žiadna výška stanice, nasleduje hlásenie o chybe s upozornením na určenie výšky stanice.

11. Aplikácie

11.1 Horizontálne vytýčenie (H-vytýčenie)

11.1.1 Princíp H-vytýčenia

Vytýčením sa údaje z plánu prenesú do terénu.

Tieto údaje z plánu sú buď rozmery, ktoré sa vztahujú na stavebné osi, alebo pozície, ktoré sú opísané súradnicami.
Údaje z plánu alebo pozície vytýčenia možno zadávať ako rozmery či vzdialenosti, možno ich zadávať so súradnicami alebo používať ako dáta, ktoré boli predtým prenesené z počítača. Dodatočne je možné preniesť údaje plánu z PC (vo forme nákresu CAD) na tachymeter a vyberať ich na vytýčenie priamo na tachymetri, vo forme grafického bodu, alebo grafického prvku. Vďaka tomu nie je nutná manipulácia s veľkými číslami alebo s veľkým množstvom čísel.

Na spustenie aplikácie "Horizontálne vytýčenie" je potrebné vybrať v ponuke aplikácie príslušné tlačidlo.

Ponuka aplikácie

15/06/11
10:19

<table>
<thead>
<tr>
<th>Späť</th>
<th>Návрат na predchádzajúce zobrazenie.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalšie</td>
<td>Pokračovanie ďalej na výber ďalších aplikácií.</td>
</tr>
<tr>
<td>Vytýčenie H</td>
<td>Vyvolanie aplikácie Horizontálne vytýčenie.</td>
</tr>
<tr>
<td>Premer.</td>
<td></td>
</tr>
<tr>
<td>V vytýčenie</td>
<td></td>
</tr>
<tr>
<td>Meranie rozpätia</td>
<td></td>
</tr>
</tbody>
</table>

Po vyvolaní aplikácie nasledujú zobrazenia projektov, prípadne výber projektu (pozrite si kapitolu 13.2) a voľba príslušnej stanice, prípadne postavenia stanice.

Po vykonaní postavenia stanice sa spustí aplikácia "Horizontálne vytýčenie". V závislosti od voľby stanice sú dve možnosti pri určení vytýčovaného bodu:

1. Vytýčenie bodov so stavebnými osami.
2. Vytýčenie bodov so súradnicami a/alebo bodmi na základe CAD-nákresu.

11.1.2 Vytýčenie so stavebnými osami

Pri vytýčení so stavebnými osami sa hodnoty vytýčenia, ktoré je potrebné zadať, vždy vzťahujú na tú stavebnú os, ktorá bola zvolená ako referenčná os.

Zadanie bodu vytýčenia k stavebnej osi

Zadanie pozície vytýčenia ako roznor, vo vzťahu na stavebnú os definovanú v postavení stanice, prípadne stavebnú os, na ktoré je postavený prístroj.

Zadávanými hodnotami sú dĺžkové a priečne vzdialenosti vo vzťahu na definovanú stavebnú os.
Zadávanie hodnôt vytýčenia

Aplikácia: Vytýčenie HZadávanie hodnôt vytýčenia

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R85</th>
</tr>
</thead>
<tbody>
<tr>
<td>v rfl</td>
<td>0.400 m</td>
</tr>
<tr>
<td>Výč</td>
<td>7.000 m</td>
</tr>
<tr>
<td>Sev</td>
<td>6.800 m</td>
</tr>
<tr>
<td>Výš</td>
<td>2.746 m</td>
</tr>
</tbody>
</table>

UPOZORNENIE

Hodnoty vytýčenia na stavebnej osi v smere dopetu a dozadu od stanice s prístrojom sú hodnotami dĺžky a hodnoty vytýčenia ležiace napravo a naľavo od stavebnej osi sú priečnymi hodnotami. Hodnoty dopetu a napravo sú kladnými hodnotami, hodnoty dozu a naľavo sú zápornými hodnotami.

Smer k bodu vytýčenia

Prístroj sa s týmto zobrazením zarovnáva k vytýčovanému bodu tak, že prístroj sa otáča dovedom, kým červený ukazovateľ smeru nestojí na "nule" a pod ním ležiace zobrazenie rozdielového uhla nestojí presne a v dostatočnej miere na "nule". V takomto prípade ukazuje nitkový križ do smeru k vytýčovanému bodu, aby naviedol nosiča reflektora. Dodatočne je tu aj možnosť, že nosič reflektora sa prostredníctvom pomocí pri navádzaní sám môže naviesti do cieľovej línie.

Vyrovnanie a meranie

Aplikácia: Vytýčenie HVyrovnanie a meranie

<table>
<thead>
<tr>
<th>v rfl</th>
<th>0.400 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
<td>R85</td>
</tr>
<tr>
<td>Hu</td>
<td>47° 34' 46"</td>
</tr>
<tr>
<td>Hv</td>
<td>8.345 m</td>
</tr>
</tbody>
</table>

Návrat na predchádzajúce zobrazenie.

Potvrdenie zadania a pokračovanie ďalej zobrazením na vyrovnanie prístroja k vytýčovanému bodu.

Návrat na zadávanie hodnôt vytýčenia.

Zmeranie vzdialenosť a pokračovanie ďalej zobrazením korekcií pre vytýčenie.
P0 je pozícia prístroja po postavení.
P1 je bod vytýčenia a prístroj je už zarovnaný k bodu vytýčenia.
Nosič reflektora stojí v blízkosti vypočítanej vzdialenosti.
Po každom meraní vzdialenosti sa zobrazí, o aký úsek smerom vpred alebo späť (dozadu) sa musí pohnúť nosič reflektora v smere vytýčaného bodu.

Korekcie vytýčenia po zmenení vzdialenosti
Po úspešnom meraní vzdialenosti sa nosič reflektora navedie pomocou korekcií vpred, späť (dozadu), vľavo, vpravo, hore a dolu.
V prípade, že nosič reflektora bude "zameraný" presne v cieľovej linii, zobrazí sa korekcia smerom vpravo / vľavo s hodnotou 0,000 m (0,00 ft).

<table>
<thead>
<tr>
<th>Vytýčenie H</th>
<th>Výsledok</th>
<th>Mer</th>
<th>Údaj</th>
<th>Späť</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.rfl</td>
<td>0.400 m</td>
<td>H1</td>
<td>1.758 m</td>
<td>2.037 m</td>
</tr>
<tr>
<td>Bod ID</td>
<td>Vpr</td>
<td>Vpravo</td>
<td>Dolu</td>
<td></td>
</tr>
</tbody>
</table>

Návrat na zadávanie hodnot vytýčenia.

Zobrazenie výsledku a uloženie.

Zmeranie vzdialenosti a aktualizovanie korekcie pre vytýčenie.

Zadanie ďalšieho bodu.

Printed: 07.07.2013 | Doc-Nr: PUB / 5070144 / 000 / 00
P0 je pozícia prístroja po postavení.
Keď prebieha meranie k pozícii reflektora, ktorá neleží presne v smere k novému bodu, zobrazia sa zodpovedajúce korekcie smerom vpred, späť (dozadu), vľavo, vpravo k novému bodu P1.

Prehľad smerových pokynov k bodu vytýčenia, vychádzajúc z posledného meraného cieľového bodu

<table>
<thead>
<tr>
<th>Smer</th>
<th>Návod</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpred</td>
<td>Nosič reflektora sa musí o uvedený počet jednotiek posunúť bližšie k prístroju.</td>
</tr>
<tr>
<td>späť</td>
<td>Nosič reflektora sa musí o uvedený počet jednotiek posunúť ďalej od prístroja.</td>
</tr>
<tr>
<td>vľavo</td>
<td>Nosič reflektora sa musí (pri poháde od prístroja) posunúť doľava o uvedený počet jednotiek.</td>
</tr>
<tr>
<td>vpravo</td>
<td>Nosič reflektora sa musí (pri poháde od prístroja) posunúť doprava o uvedený počet jednotiek.</td>
</tr>
<tr>
<td>hore</td>
<td>Špička reflektora sa musí o uvedený počet jednotiek posunúť nahor.</td>
</tr>
<tr>
<td>dolu</td>
<td>Špička reflektora sa musí o uvedený počet jednotiek posunúť nadol.</td>
</tr>
</tbody>
</table>

Výsledky vytýčenia
Zobrazenie rozdielov vytýčenia v dĺžke, prieč. a výške je založené na poslednom meraní cieľového bodu.
UPOZORNENIE
Ak v postavení stanice (a v príslušných nastaveniach) nebola nastavená žiadna volba pre výšky, bude zobrazenie dát o výške a všetky relevantné zobrazenia, vztahujúce sa k nej, potlačené.

Uloženie dát vytýčenia so stavebnými osami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dľžka (zadaná)</td>
<td>Zadaná dĺžková vzdialenosť vztahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Prieč. (zadaná)</td>
<td>Zadaná priečná vzdialenosť vztahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výška.</td>
</tr>
<tr>
<td>Dĺžka (nameraná)</td>
<td>Nameraná dĺžková vzdialenosť vztahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Prieč. (nameraná)</td>
<td>Nameraná priečná vzdialenosť vztahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
<tr>
<td>dPrieč</td>
<td>Rozdiel v priečnej hodnote, na základe stavebnej osi. dPrieč = prieč. (nameraná) – prieč. (zadaná)</td>
</tr>
<tr>
<td>dLn</td>
<td>Rozdiel v hodnote dĺžky, na základe stavebnej osi. dLn = dĺžka (nameraná) – dĺžka (zadaná)</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdiel vo výške. dVýš = výška (nameraná) – výška (zadaná)</td>
</tr>
</tbody>
</table>

11.1.3 Vytýčenie so súradnicami

Zadanie bodov vytýčenia
Zadanie hodnôt vytýčenia so súradnicami bodov sa dá vykonať tromi rôznymi spôsobmi:

1. Manuálnym zadávaním súradníctva bodov.
2. Výberom súradníctva bodov zo zoznamu s uloženými bodmi.
3. Výberom súradníctva bodov z grafiky CAD s uloženými bodmi.
Zadanie bodov vytýčenia (s nákresom CAD)

Bod vytýčenia sa volia priamo z nákresu CAD.

Pritom je bod už uložený ako trojrozmerný alebo dvojrozmerný a v závislosti od toho sa aj extrahuje.

UPOZORNENIE

Ak je v postavení stanice (a v príslušných nastaveniach) zvolená volba bez výšok, budú dáta o výške a všetky relevantné zobrazenia potlačené. Ďalšie zobrazenia sú totožné so zobrazeniami v predchádzajúcej kapitole.

P0 je pozícia prístroja po postavení.
P1 je bod daný súradnicami. Po vyrovnaní prístroja prejde nosič reflektora na približne vypočitanú vzdialenosť. Po každom meraní vzdialenosti sa zobrazí, o aký úsek sa musí nosič reflektora ešte pohnúť v smere vytyčovaneho bodu.

Výsledky vytýčenia so súradnicami
Zobrazenie rozdielov vytýčenia v súradniciach je založené na posledných meraniach vzdialenosti a uhlov.

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R85</th>
</tr>
</thead>
<tbody>
<tr>
<td>dVých</td>
<td>-3.637 m</td>
</tr>
<tr>
<td>dSev</td>
<td>-3.514 m</td>
</tr>
<tr>
<td>dVých</td>
<td>-0.657 m</td>
</tr>
</tbody>
</table>

P0 je pozícia prístroja po postavení.
Ak sa meria k pozícii reflektora, ktorá neleží presne v smere k novému bodu, zobrazia sa zodpovedajúce korekcie smerom vpred, späť (dozadu), vľavo, vpravo k novému bodu P1.

Ukladanie dát z vytýčenia so súradnicami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severná súradnica (zadaná)</td>
<td>Zadaná severná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Východná súradnica (zadaná)</td>
<td>Zadaná východná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>Severná súradnica (nameraná)</td>
<td>Nameraná severná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
<tr>
<td>Východná súradnica (nameraná)</td>
<td>Nameraná východná súradnica vzťahujúca sa na referenčnú systém súradníc.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>dSev (dN)</td>
<td>Rozdiel severných súradníc, na základe referenčného systému súradníc. dSev (dN) = severná súradnica (nameraná) – severná súradnica (zadaná)</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdiel vo výške. dVýš = výška (nameraná) – výška (zadaná)</td>
</tr>
<tr>
<td>dVých (dE)</td>
<td>Rozdiel východných súradníc, na základe referenčného systému súradníc. dVých (dE) = východná súradnica (nameraná) – východná súradnica (zadaná)</td>
</tr>
</tbody>
</table>

UPOZORNENIE

Horizontálne vytýčenie so súradnicami sa v postupe rovná vytýčeniu vychádzajúcemu zo stavebných osí s výnimkou toho, že namiesto dĺžkových a priečnych vzdialeností sa ako výsledky zobrazujú alebo zadávajú súradnice, prípadne rozdiely súradníc.

11.2 Vertikálne vytýčenie (V-vytýčenie)

11.2.1 Princíp vertikálneho vytýčenia (V-vytýčenia)

Vertikálnym vytýčením (označovaným aj ako V-vytýčenie) sa údaje z plánu prenášajú na vertikálnu referenčnú rovinu, ako je napríklad stena, fasáda a podobne. Tieto údaje z plánu sú buď rozmermi, ktoré sa vzťahujú na stavebné osi na vertikálnej referenčnej rovine, alebo sú to pozície, ktoré sú opísané formou súradníc vo vertikálnej referenčnej rovine. Údaje z plánu, prípadne pozície vytýčenia sa dajú zadávať ako rozmer alebo vzdialenosť a so súradnicami, alebo sa dajú používať ako dátum, ktoré boli predtým prenesené z počítača. Dodatočne je možné preniesť údaje plánu z počítača (vo forme nákresu CAD) na tachometer a vyberať ich na vytýčenie na tachometri, vo forme grafického bodu, alebo grafického prvku. Vďaka tomu nie je nutná manipulácia s veľkými číslami alebo s veľkým množstvom čísel. Typické využitie predstavuje: určovanie pozície upevňovacích bodov pri fasádach, stenách s kolajničkami, rúrami a podobne. Ako špeciálna aplikácia je ešte k dispozícii možnosť porovnáť vertikálnu plochu s teoretickou plochou uvedenou v pláne a tak skontrolovať, či zadokumentovať rovinnosť.
Na spustenie aplikácie "Vertikálné vytýčenie" je potrebné v ponuke aplikácií zvoliť príslušné tlačidlo.

Ponuka aplikácie

Po vyvolaní aplikácie nasledujú zobrazenia projektov, prípadne výber projektu a výber príslušnej stanice či postavenia stanice.
Po vykonaní postavenia stanice sa spustí aplikácia "Vertikálné vytýčenie". V závislosti od voľby stanice sú dve možnosti pri určení vytýčovaného bodu:

1. Vytýčenie bodov so stavebnými osami, to znamená osami na vertikálnej referenčnej rovine.
2. Vytýčenie bodov so súradnicami, prípadne bodmi na základe nákresu CAD.

11.2.2 Vertikálné vytýčenie (V-vytýčenie) so stavebnými osami

Pри vertikálnom vytýčení so stavebnými osami sú osi definované meraním k dvom referenčným bodom, spolu s postavením stanice.

Postavenie stanice

Postavenie stanice sa určuje podľa možnosti centrálné / v strede pred vertikálnou rovinou v takej vzdialenosti, aby bol podľa možnosti dobrý výhľad na všetky body.
Prístrojom sa pri postavení definuje nulový bod (1) systému referenčných osí a smer (2) vertikálnej referenčnej roviny.

Pozor

Referenčný bod (1) je rozhodujúcim bodom. V tomto bode je určená zvislá a vodorovná referenčná os, vo vertikálnej referenčnej rovine.
Optimálne postavenie, prípadne pozícia prístroja vznikne vtedy, keď pomer horizontálnej referenčnej dĺžky \(L_n \) k vzdialenosti Prieč je v pomere \(L_n : \text{Prieč} = 25 : 10 \) až \(7 : 10 \), tak, aby zvieraný uhol bol v rozpätí \(\alpha = 40^\circ - 100^\circ \).

UPOZORNENIE

Postavenie stanice (a príslušné nastavenie) je analogické ako postavenie "Voľnej stanice" so stavebnými osami, s tým rozdielom, že prvý referenčný bod určuje nulový bod systému stavebných osí na vertikálnej rovine a druhý referenčný bod určuje smer vertikálnej roviny k systému prístroja. V každom prípade sú osi brané horizontálne alebo vertikálne od bodu (1).

Zadanie posunu osí

Na posunutie systému osí, prípadne "nulového bodu" na vertikálnej referenčnej rovine, sa zadávajú hodnoty posunu.

Tieto hodnoty posunu môžu posunúť nulový bod systému osí v horizontálnom smere doľava (-) a doprava (+), vo vertikálnom smere nahor (+) a nadol (-) a celú rovinu smerom dopredu (+) a dozadu (-).

Posuny osí môžu byť potrebné vtedy, keď "nulový bod" nemôže byť priamo zacielený ako prvý referenčný bod, a preto je potrebné použiť existujúci referenčný bod a potom sa musí vykonať posun na os, zadaním vzdialenosti ako hodnot posunu.

Posunutie ref. línie

Aplikácia vyšetrenia/Pozn. vyšetrenia

<table>
<thead>
<tr>
<th>L / P</th>
<th>0.000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>H / D</td>
<td>0.000 m</td>
</tr>
<tr>
<td>Vpr / Vz</td>
<td>0.000 m</td>
</tr>
</tbody>
</table>

| Zruš | OK |

Prerušenie a návrat na predchádzajúce zobrazenie.

Potvrdenie zadania a pokračovanie ďalej zadávaním hodnôt vyšetrenia.
Zadanie pozície vytýčenia
Zadanie hodnôt vytýčenia ako rozmeru vo vzťahu na referenčnú os definovanú v postavení stanice, prípadne stavebnú os na vertikálnej rovine.

<table>
<thead>
<tr>
<th>Štítek</th>
<th>Zadanie hodnôt vytýčenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
<td>V1 (\rho_{ec})</td>
</tr>
<tr>
<td>v.rfl</td>
<td>1.800 m ((123))</td>
</tr>
<tr>
<td>Dĺžka</td>
<td>5.000 m ((123))</td>
</tr>
<tr>
<td>Výška</td>
<td>6.000 m ((123))</td>
</tr>
<tr>
<td>Prieč</td>
<td>0.200 m ((123))</td>
</tr>
</tbody>
</table>

Smer k bodu vytýčenia
Prístraj sa s týmto zobrazením zarovnáva k vytýčovanému bodu tak, že prístraj sa otáča dovtedy, kým červený ukazovateľ smeru nestoji na "nule".
V takomto prípade ukazuje nítkový kríž do smeru k vytýčovanému bodu.
Potom sa bude ďalekohľad pohybovať vo vertikále, až pokiaľ nebudú obidva trojuholníky vykazovať nijaký výplň.

UPOZORNENIE
Pri vyplnení horného trojuholníka pohnite ďalekohľadom nadol. Pri vyplnení spodného trojuholníka pohnite ďalekohľadom nahor.

Ak je to možné, môže sa osoba prostredníctvom pomôcky na navádzanie pri cieli, sama naviest do cieľovej línie.

<table>
<thead>
<tr>
<th>Štítek</th>
<th>Vyrovnanie a meranie</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.rfl</td>
<td>1.800 m ((123))</td>
</tr>
<tr>
<td>Bod ID</td>
<td>V1 (\rho_{ec})</td>
</tr>
<tr>
<td>Hu</td>
<td>70° 04' 41"</td>
</tr>
<tr>
<td>Hv</td>
<td>3.542 m</td>
</tr>
</tbody>
</table>

Korekcie vytýčenia
Zobrazením korekcii sa nosič ciela alebo ciel navádza hore, dolu, vľavo, vpravo.
Pomocou zmerania vzdialeností sa taktiež vykonáva korekcia smerom vpred, prípadne späť (dozadu).
Po každom meraní vzdialeností sa zobrazené korekcie aktualizujú, aby po jednotlivých krokoch došlo k približeniu k cieľovej pozícii.
Zobrazovanie pokynov týkajúce sa smeru pohybu meraného cieľa.

<table>
<thead>
<tr>
<th>smer</th>
<th>opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpred</td>
<td>Nosič cieľa, prípadne cieľ sa musí pohybovať ďalej do smeru referenčnej roviny.</td>
</tr>
<tr>
<td>späť</td>
<td>Nosič cieľa, prípadne cieľ sa musí pohybovať ďalej smerom preč od referenčnej roviny.</td>
</tr>
<tr>
<td>vlavo</td>
<td>Nosič cieľa, prípadne cieľ sa musí (pri pohľade od prístroja) posunúť doľava o uvedený počet jednotiek.</td>
</tr>
<tr>
<td>vpravo</td>
<td>Nosič cieľa, prípadne cieľ sa musí (pri pohľade od prístroja) posunúť doprava o uvedený počet jednotiek.</td>
</tr>
<tr>
<td>hore</td>
<td>Nosič cieľa, prípadne cieľ sa musí (pri pohľade od prístroja) posunúť nahor o uvedený počet jednotiek.</td>
</tr>
<tr>
<td>dolu</td>
<td>Nosič cieľa, prípadne cieľ sa musí (pri pohľade od prístroja) posunúť nadol o uvedený počet jednotiek.</td>
</tr>
</tbody>
</table>

Výsledky vytýčenia
Zobrazenie rozdielov vytýčenia v dĺžke, výške a offsete sa zakladá na posledných meraniach vzdialenosťí a uhlov.
Ukladanie dát z vytýčenia so stavebnými osami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dĺžka (zadaná)</td>
<td>Zadaná dĺžková vzdialenosť vztahujúca sa na referenčnú os.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Offset (zadaný)</td>
<td>Offset zadaný vertikálne na referenčnú rovinu.</td>
</tr>
<tr>
<td>Dĺžka (nameraná)</td>
<td>Nameraná dĺžková vzdialenosť vztahujúca sa na referenčnú os.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
<tr>
<td>Offset (nameraný)</td>
<td>Nameraný offset, vztahujúci sa na referenčnú rovinu.</td>
</tr>
<tr>
<td>DLn</td>
<td>Rozdiel v hodnote dĺžky, na základe referenčnej osi. DLn = dĺžka (nameraná) – dĺžka (zadaná)</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdiel vo výške. dVýš = výška (nameraná) – výška (zadaná)</td>
</tr>
<tr>
<td>dOffs</td>
<td>Rozdiel v hodnote prieč., na základe referenčnej osi. dOffs = offset (nameraný) – offset (zadaný)</td>
</tr>
</tbody>
</table>

11.2.3 V-vytýčenie so súradnicami

Súradnice je možné použiť vtedy, keď sú napríklad referenčné body dostupné ako súradnice a body na vertikálnej rovine sú taktiež dostupné ako súradnice v tom istom systéme. Takýto prípad nastáva napríklad vtedy, keď bola vertikálna rovina predtým vymeraná s použitím súradnic.

Zadanie bodov vytýčenia
Zadanie hodnôt vytýčenia so súradnicami bodov sa dá vykonať tromi rôznymi spôsobmi:

1. Manuálnym zadaním súradníc bodov.
2. Voľbou súradníc bodov zo zoznamu s uloženými bodmi.
3. Voľbou súradníc bodov z grafiky CAD s uloženými bodmi.

Zadávanie hodnôt vytýčenia

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>V1</th>
<th>Posuny</th>
<th>Prerušenie a návrat na úvodné menu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.rfl</td>
<td>0.400 m</td>
<td>123</td>
<td>Zruš</td>
</tr>
<tr>
<td>Dĺžka</td>
<td>7.000 m</td>
<td>123</td>
<td>OK</td>
</tr>
<tr>
<td>Výš</td>
<td>6.800 m</td>
<td>123</td>
<td>Potvrdenie zadania a pokračovanie ďalej zobrazením na vyrovnanie prístroja k vytýčovaniu bodu.</td>
</tr>
<tr>
<td>Prieč</td>
<td>0.746 m</td>
<td>123</td>
<td></td>
</tr>
</tbody>
</table>

Zadanie hodnôt vytýčenia (s nákresom CAD)
Tu sa vyberajú body vytýčenia priamo z grafiky typu CAD.
Pritom je bod už uložený ako trojrozmerný alebo dvojrozmerný a v závislosti od toho sa aj extrahuje.

Výsledky vytýčenia so súradnicami
Zobrazenie rozdielov vytýčenia v súradničiach je založené na posledných meraniach vzdialeností a uhlov.

Ukladanie dát z vytýčenia so súradnicami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severná súradnica (zadaná)</td>
<td>Zadaná severná súradnica vzťahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Východná súradnica (zadaná)</td>
<td>Zadaná východná súradnica vzťahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>Severná súradnica (nameraná)</td>
<td>Nameraná severná súradnica vzťahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
<tr>
<td>Východná súradnica (nameraná)</td>
<td>Nameraná východná súradnica vzťahujúca sa na referenčný systém súradníc.</td>
</tr>
<tr>
<td>dSev (dN)</td>
<td>Rozdiel severných súradníc, na základe referenčného systému súradníc. dSev (dN) = severná súradnica (nameraná) – severná súradnica (zadaná)</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdiel vo výške. dVýš = výška (nameraná) – výška (zadaná)</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>dVých (dE)</td>
<td>Rozdiel východných súradníc, na základe referenčného systému súradníc. dVých (dE) = východná súradnica (nameraná) – východná súradnica (zadaná)</td>
</tr>
</tbody>
</table>

UPOZORNENIE
Vertikálne vytýčenie vždy používa trojrozmerné opisy bodov. Pri vytyčovaní s využitím stavebných osí a vytyčovaniu s využitím súradníc sa používajú rozmery dĺžky, výšky a offsetu.

UPOZORNENIE
Ďalšie zobrazenia sú totožné so zobrazeniami v predchádzajúcej kapitole.

11.3 Premeranie
11.3.1 Princíp premerania
V princípe možno premeranie chápať ako aplikáciu, ktorá pracuje opačne ako Horizontálne vytýčenie.
Premeraním sa porovnávajú existujúce pozície s ich plánovanými pozíciami a odchýlky sa zobrazia a uložia.
V závislosti od postavenia stanice sa dajú údaje z plánu, prípadne porovnávacie pozície - ako sú rozmery či vzdialenosť, používať ako súradnice alebo body s grafikou.
Keď sa prenesú z počítača údaje plánu, vo forme nákresu CAD, na tachymeter a vyberú sa na tachymetru ako grafický bod či grafický prvok na vytýčenie, nebude nutná manipulácia s veľkými číslami alebo s veľkým množstvom čísel.
Typickými spôsobmi využitia sú: kontrola stien, stĺpov, debnení, veľkých otvorov a mnoho iného. Na tento účel je vykonávané porovnanie s plánovanými pozíciami a rozdiely sa zobrazujú alebo ukladajú priamo na mieste.

![Premeranie diagnostického obdobia](image)

Na spustenie aplikácie "Premeranie (Premer.)" je potrebné vybrať v ponuke aplikácie príslušné tlačidlo.
Po vyvolaní aplikácie nasledujú zobrazenia projektov, prípadne výber projektu a voľba príslušnej stanice či postavenia stanice. Po postavení stanice sa spustí aplikácia "Premeranie (Premer.)". V závislosti od voľby stanice sú dve možnosti pri určení premeriavaného bodu:

1. Premeranie bodov so stavebnými osami.
2. Premeranie bodov so súradnicami a/alebo bodov, na základe nákresu CAD.

11.3.2 Premeranie so stavebnými osami

Pri premeraní so stavebnými osami sa hodnoty premerania, ktoré je potrebné zadať, vždy vztahujú na tú stavebnú os, ktorá bola zvolená ako referenčná os.

Zadanie pozície premerania

Zadanie pozície premerania ako rozmeru vo vztahu na stavebnú os definovanú v postavení stanice, prípadne stavebnú os, na ktorej je postavený prístroj.

Zadávanými hodnotami sú dĺžkové a priečne vzdialenosti vo vztahu na definovanú stavebnú os.

Zadávanie dát premeriavania

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>(H_1)</th>
<th>(v_{rfl})</th>
<th>Dĺžka</th>
<th>Prieč</th>
<th>Výš</th>
<th>OK</th>
</tr>
</thead>
</table>

| \(r_{ec} \) | \(0.400 \) m | \(0.000 \) m | \(0.000 \) m | \(0.000 \) m |

UPOZORNENIE

Hodnoty premerania na stavebnej osi v smere dopredu a dozadu od stanice s prístrojom sú hodnotami dĺžky a hodnoty premerania ležiace napravo a naľavo od stavebnej osi sú priečnými hodnotami. Hodnoty dopredu a napravo sú kladnými hodnotami, hodnoty dozadu a naľavo sú zápornými hodnotami.
Smer k bodu premerania

Prístroj sa s týmto zobrazením vyrovňáva k premeriavanému bodu tak, že prístroj sa otáča dovtedy, kým červený ukazovateľ smeru nestojí na "nulove" a pod ním ležiace číselné zobrazenie nestojí presne a v dostatočnej miere na "nulove".

V tomto prípade smeruje nítkový križ do smeru k bodu premerania, aby bolo možné navádzanie nosiča reflektora a identifikácia bodu premerania.

UPOZORNENIE

Pri bodoch na zemi existuje dodatočné aj možnosť, že nosič reflektora sa môže z veľkej časti navádzat' do cieľovej linie sám, prostredníctvom pomoci pri navádzaní.

Výrovnanie a meranie

<table>
<thead>
<tr>
<th>Výrobné štýlajúci bod</th>
<th>15/06/11 10:21</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.rfl</td>
<td>0.400 m</td>
</tr>
<tr>
<td>Bod ID</td>
<td>R85</td>
</tr>
<tr>
<td>Hu</td>
<td>47° 34' 46"</td>
</tr>
<tr>
<td>Hv</td>
<td>8.345 m</td>
</tr>
</tbody>
</table>

Návrat na zadávanie hodnôt vytýčenia.

Zmeranie vzdialenosti a po- kračovanie dalej zobra- ním odchýlok.

Výsledky premerania

Zobrazenie pozičných rozdielov v dĺžke, prieč. a výške založené na posledných meraníach vzdialeností a uhlov.

<table>
<thead>
<tr>
<th>Výsledky premeriavaní</th>
<th>15/06/11 09:07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
<td>H1</td>
</tr>
<tr>
<td>dLn</td>
<td>3.326 m</td>
</tr>
<tr>
<td>dPríc</td>
<td>-0.073 m</td>
</tr>
<tr>
<td>dVýš</td>
<td>1.506 m</td>
</tr>
</tbody>
</table>

Návrat na zadávanie hod- nôt vytýčenia.

Uloženie hodnôt vytýčenia a posledných rozdielov.

UPOZORNENIE

Ak v postavení stanice (a v príslušných nastaveniach) nebola nastavená žiadna voľba pre výšky, bude zobrazenie dát o výške a všetky relevantné zobrazenia, vztahujúce sa k nej, potlačené.

Uloženie dát z premerania so stavebnými osami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dĺžka (zadaná)</td>
<td>Zadaná dĺžková vzdialenosť vztahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Prieč. (zadaná)</td>
<td>Zadaná priečna vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výška.</td>
</tr>
<tr>
<td>Dĺžka (nameraná)</td>
<td>Nameraná dĺžková vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Prieč. (nameraná)</td>
<td>Nameraná priečna vzdialenosť vzťahujúca sa na stavebnú os.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
</tbody>
</table>

dPrieč
Rozdiel v priečnej hodnote, na základe stavebnej osi. dPrieč = prieč. (nameraná) – prieč. (zadaná)

dLn
Rozdiel v hodnote dĺžky, na základe stavebnej osi. dLn = dĺžka (nameraná) – dĺžka (zadaná)

dVýš
Rozdiel vo výške. dVýš = výška (nameraná) – výška (zadaná)

11.3.3 Premeranie so súradnicami

Zadanie bodu premerania
Zadanie so súradnicami bodov sa dá vykonať trojmi rôznymi spôsobmi:

- Manuálnym zadaním súradníc bodov.
- Výberom súradníc bodov zo zoznamu s uloženými bodmi.
- Výberom súradníc bodov z grafiky CAD s uloženými bodmi.

Zadávanie dál premeriavaná

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>R82</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.rfl</td>
<td>0.400 m</td>
</tr>
<tr>
<td>Výc</td>
<td>1.000 m</td>
</tr>
<tr>
<td>Sev</td>
<td>2.000 m</td>
</tr>
<tr>
<td>Výš</td>
<td>2.000 m</td>
</tr>
</tbody>
</table>

Spat
Návrat na predchádzajúce zobrazenie.

OK
Potvrdenie zadania a pokračovanie ďalej zobrazením na vyrovnanie prístroja k meranému bodu.

Zadanie pozície premerania (s nákresom CAD)

Tu sa volia body premerania priamo z nákresu CAD. Pritom je bod už uložený ako trojrozmerný alebo dvojrozmerný a v závislosti od toho sa aj extrahuje.
UPOZORNENIE
Ak je v postavení stanice (a v príslušných nastaveniach) zvolená voľba bez výšok, budú dáta o výške a všetky relevantné zobrazenia potlačené.

UPOZORNENIE
Ďalšie zobrazenia sú totožné so zobrazeniami v predchádzajúcej kapitole.

Výsledky vytýčenia so súradnicami
Zobrazenie rozdielov vytýčenia v súradniach je založené na posledných meraniach vzdialeností a uhlov.

<table>
<thead>
<tr>
<th>Výsledky premeriavania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod ID</td>
</tr>
<tr>
<td>dVýc</td>
</tr>
<tr>
<td>dSev</td>
</tr>
<tr>
<td>dVýš</td>
</tr>
</tbody>
</table>

Návrat na zadávanie hodnôt vytýčenia.

Uloženie hodnôt vytýčenia a posledných rozdielov.

Zadanie ďalšieho bodu.

Ukladanie dát z vytýčenia so súradnicami

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov bodu vytýčenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severná súradnica (zadaná)</td>
<td>Zadaná severná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>Výška (zadaná)</td>
<td>Zadaná výšková hodnota.</td>
</tr>
<tr>
<td>Východná súradnica (zadaná)</td>
<td>Zadaná východná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>Severná súradnica (nameraná)</td>
<td>Nameraná severná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>Výška (nameraná)</td>
<td>Nameraná výška.</td>
</tr>
<tr>
<td>Východná súradnica (nameraná)</td>
<td>Nameraná východná súradnica vzťahujúca sa na referenčný systém súradnic.</td>
</tr>
<tr>
<td>dSev (dN)</td>
<td>Rozdiel severných súradníck, na základe referenčného systému súradníck. dSev (dN) = severná súradnica (nameraná) – severná súradnica (zadaná)</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>dVýš</td>
<td>Rozdiel vo výške. dVýš = výška (nameraná) – výška (zadaná)</td>
</tr>
<tr>
<td>dVých (dE)</td>
<td>Rozdiel východných súradníck, na základe referenčného systému súradníck. dVých (dE) = východná súradnica (nameraná) – východná súradnica (zadaná)</td>
</tr>
</tbody>
</table>
1. Možnosť – vzťah na základný bod

Príklad s bodmi na zemi
Po zmeraní prvého bodu sa všetky ďalšie merané body vzťahujú na prvý bod.

2. Možnosť – vzťah medzi prvým a druhým bodom

Príklad s bodmi na zemi
Meranie prvých dvoch bodov.
Po výsledku si zvoľte novú líniu, ako aj nový základný bod a zmerajte nový druhý bod.
11.5 Meranie a zaznamenanie

11.5.1 Princip merania a zaznamenania

Meraním a zaznamenaním sa merajú body, ktorých pozícia nie je známa. Vzdialenosť sa môžu merat' laserom, ak je možné nasmerovať laserový lúč priamo na povrch. Pozície bodov sa vypočítajú podľa postavenia stanice, buď s rozmermi stavebných osí, alebo so súradnicami a/alebo aj s vypočítaním výšok. Namerané body môžu byť vybavené rôznymi označeniami bodov a uložené.
UPOZORNENIE
S každým uložením sa názov bodu automaticky zvýši o hodnotu "1".

Uložené dátá bodov možno preniesť na PC a znázorniť a ďalej spracovať alebo vytlačiť (na dokumentačné účely a archiváciu) v programe CAD alebo v podobných systémoch. Na spustenie aplikácie "Meranie a zaznamenanie" je potrebné v ponuke aplikácií zvoliť príslušné tlačidlo.

Po vyvolaní aplikácie nasledujú zobrazenia projektov, prípadne výber projektu a výber príslušnej stanice či postavenia stanice.
Po vykonaní postavenia stanice sa spustí aplikácia "Meranie a zaznamenanie".
V závislostí od voľby k postaveniu stanice sú dostupné dve možnosti pri určovaní systému bodov:

1. Pozicie bodu v závislosti od stavebné osi
2. Pozicie bodu v závislosti od systému súradnic

11.5.2 Meranie a zaznamenanie so stavebnými osami
Pozicie meraných bodov sa vzťahujú na stavebnú os, ktorá bola použitá na referenciu.
Pozície sú opísané dížkovým rozmerom na stavebnej osi a priečnou vzdialenost'ou v pravom uhle.
P0 je pozícia prístroja po postavení. Ak sa k cieľom zmerajú uhly a vzdialenosti, vypočítajú alebo uložia sa príslušné vzdialenosti stavebných osí Ln a Prieč.

Meranie bodov so stavebnými osami
Po ukončení nastavovania postavenia stanice je možné bezprostredne začať s meraním.

Zmerajte body

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>1RBC</th>
<th>Hu</th>
<th>131° 40' 47"</th>
<th>Vu</th>
<th>74° 50' 08"</th>
<th>Hv</th>
<th>4.403 m</th>
</tr>
</thead>
</table>

Spät | **Záz** | **M&Z** | **Mer** | **L & P**

Zmerajte body

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>1RBC</th>
<th>Ln</th>
<th>0.263 m</th>
<th>Prieč</th>
<th>0.000 m</th>
</tr>
</thead>
</table>

Spät | **Záz** | **M&Z** | **Mer** | **Uhol**

11.5.3 Meranie a zaznamenanie so súradnicami
Pozície meraných bodov sa vztahujú na rovnaký systém súradníc, v ktorom bolo vykonané postavenie stanice a tieto pozície sú opísané hodnotami súradníc E alebo Y, N alebo X a Výš pre výšku.

Spät | **Záz** | **M&Z** | **Mer** | **L & P** | **Uhol**

Prerušenie a návrat na ponuku pre výber.

Uložiť hodnoty zobrazené na displeji pre horizontálnu vzdialenosť, horizontálny uhol a vertikálny uhol.

Zmerať a uložiť horizontálnu vzdialenosť, horizontálny uhol a vertikálny uhol.

Zmeranie vzdialenosťí.

Prepnutie zobrazovania na vzdialenosť osí.

Prepnutie zobrazovania na hodnoty uhol.
P0 je pozícia prístroja po postavení. Zmerajú sa uhly a vzdialenosti k cieľom a vypočítajú a uložia sa príslušné súradnice.

Meranie bodov so súradnicami
Nasledujúce zobrazenia možno prepinať medzi zobrazením uhol a súradnic.

<table>
<thead>
<tr>
<th>Zruš</th>
<th>Prerušenie a návrat na úvodné menu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M & Z</td>
<td>Vývolanie merania vrátane uloženia dát. ID bodu (označenie) sa zvýši o "1".</td>
</tr>
<tr>
<td>Mer</td>
<td>Zmeranie vzdialenosti.</td>
</tr>
<tr>
<td>Súrad</td>
<td>Zobrazenie súradnic.</td>
</tr>
<tr>
<td>Uhol</td>
<td>Prepnutie zobrazenia na hodnoty uhol.</td>
</tr>
<tr>
<td>Záz</td>
<td>Uložiť hodnoty zobrazené na displeji pre horizontálnu vzdialenosť, horizontálny uhol a vertikálny uhol.</td>
</tr>
</tbody>
</table>

UPOZORNENIE
Ak je v postavení stanice (a v príslušných nastaveniach) zvolené nastavenie bez výšok, budú dáta o výške a všetky relevantné zobrazenia potlačené.

UPOZORNENIE
Zmeraním vzdialenosť sa zafixuje hodnota pre horizontálnu vzdialenosť. Ak sa ďalekohľad potom ešte pohne, zmenia sa len hodnoty pre horizontálny a vertikálny uhol.

Niektoré môžu byť tažké, alebo dokonca aj úplne nemožné, presne zmerať niektorý bod (napríklad stred stĺpu alebo stromu). V takomto prípade zmerajte vzdialenosť k bodu, ležiacemu priečne.

1. Keď ste zacieleli na bod, ležiaci priečne, zmerajte vzdialenosť k tomuto bodu.
2. Otočte ďalekohľad a zacieľte na samotný meraný bod, aby ste zmerali príslušný uhol.
3. Uložte si nameranú vzdialenosť k priečne ležiacemu bodu a uhol k samotnému bodu.

Uloženie dát z Merania a zaznamenania

<table>
<thead>
<tr>
<th>ID-bod</th>
<th>Názov meraného bodu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vých, Prieč.</td>
<td>Nameraná východná súradnica alebo priečna vzdialenosť k stavebnej osi</td>
</tr>
</tbody>
</table>
11.6 Vertikálne vyrovnanie

11.6.1 Princíp vertikálneho vyrovnania

S vertikálnym vyrovnávaním je možné postaviť prvky v priestore kolmo alebo ich kolmo prenájať. Tu je potrebné spomenúť predovšetkým výhody pre kolmé postavenia debení pri stĺpoch alebo to, že je možné vykonávať vytýčenie alebo kontrolu kolmo nad sebou ležiacich bodov cez viacero poschodí.

UPOZORNENIE

V princípe sa kontroluje to, či sú dva merané body priestorovo kolmo nad sebou.

UPOZORNENIE

Merania sa môžu, v závislosti od potreby pri danom spôsobе použitia, vykonávať s alebo bez reflektorovej výtyčky.

Po vyvolaní aplikácie nasleduje zobrazenie projektov, prípadne výber projektu. Nastavovanie stanice tu nie je potrebné.

Merania k 1. referenčnému bodu

K 1. referenčnému bodu sa vykonáva meranie uhlov a vzdialenosťí. Vzdialenosť je možné meráť priamo k bodu alebo s použitím reflektorovej výtyčky, v závislosti od prístupu k 1. referenčnému bodu.
V vyrovnanie

Aplikácia V vyrovnanie/Zmerajte základ bod

v. r.f. 0.400 m
Hu 356° 58' 51"
Vv 73° 40' 11"
Hv 4.645 m

Späť Mer Ďalšie

Návrat na výber projektu.
Zmeranie uhla a vzdialenosť k 1. referenčnému bodu.
Pokračovanie ďalej na ďalšie meranie.

Meranie k ďalším bodom
Meranie k ďalším bodom sa vždy vykonáva zmeraním uhlov a vzdialeností.
Po druhom a každom ďalšom meraní sa aktualizujú hodnoty korekcie v porovnaní k 1. referenčnému bodu v dole uvedenom zobrazení.

V vyrovnanie

Aplikácia V vyrovnanie/Zmerajte ref. bod

v. r.f. 0.400 m
dHu -50° 21' 11"
Vľavo 2.797 m
Späť 1.462 m
dVýš -0.614 m

Späť Mer

Návrat na meranie k prvému referenčnému bodu.
Ulož Ulož Výsledky.
Zmeranie uhla a vzdialenosť a aktualizovanie hodnôt korekcii v zobrazení.

11.7 Meranie plochy

11.7.1 Princíp merania plochy
Prístroj určuje zabranú horizontálnu alebo vertikálnu plochu z 99 po sebe nasledujúcich meraných bodov.
Poradie merania bodov sa dá určiť v smere hodinových ručičiek alebo proti smeru hodinových ručičiek.
UPOZORNENIE
Body sa musia meráť tak, aby sa medzi meranými bodmi nekrižovali prepojavacie linie, inak sa plocha vypočíta nesprávne.

Po vyvolaní aplikácie si vyberte medzi plochou v horizontálnej alebo vertikálnej rovine.

UPOZORNENIE
Nastavovanie stanice tu nie je potrebné.

UPOZORNENIE
Horizontálna plocha sa vypočítava tak, že merané body sa premietnu do horizontálnej roviny.

UPOZORNENIE
Vertikálna plocha sa vypočítava premietnutím meraných bodov do vertikálnej roviny. Vertikálna rovina je definovaná prvéma dvomi meranými bodmi.

Merania na určovanie plôch
Body by sa mali meráť v takom poradí, aby obklopovali plochu.
Na účely výpočtu je plocha vždy uzatvorená od posledného k prvemu meranému bodu.
Body sa musia meráť tak, aby sa medzi meranými bodmi nekrižovali prepojavacie linie, inak sa plocha vypočíta nesprávne.

Výsledky
Výsledky sa ukladajú v internej pamäti a dajú sa zobrazit či vytlačiť prostredníctvom programu Hilti PROFIS Layout.
11.8 Nepriame meranie výšok

11.8.1 Princíp nepriameho merania výšok

Nepriamym meraním výšok sa určujú výškové rozdiely voči neprístupným miestam príp. bodom, ak tie neumožňujú žiadne priame meranie vzdialenosť.

S použitím nepriameho merania výšok sa dajú určovať takmer ľubovoľné výšky alebo hlby, napríklad výšky vrcholov žeriava, hlby stavebných výkopov a mnoho iného.

UPOZORNENIE

Bezpodmienené je potrebné dbať na to, aby referenčný bod a ďalšie neprístupné body ležali v jednej vertikálnej rovine.

Po vyvolaní aplikácie nasleduje zobrazenie projektov, prípadne výber projektu.
Nastavovanie stanice nie je v tomto bode potrebné.
11.8.2 Nepriame určovanie výšok

Merania k 1. referencnému bodu

K 1. referencnému bodu sa vykonáva meranie uhla a meranie vzdialenosti. Vzdialenost' je možné merat' priamo k bodu alebo s použitím reflektorovej výťyčky, v závislosti od prístupu k 1. referencnému bodu.

<table>
<thead>
<tr>
<th>Zmerajte Bod 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>v rfl</td>
</tr>
<tr>
<td>Vu</td>
</tr>
<tr>
<td>Hv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spät</th>
<th>Mer</th>
<th>Ďalšie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Návrat na výber projektu.</td>
<td>Spustenie merania k bodu.</td>
<td>Pokračovanie ďalej na ďal-šie meranie.</td>
</tr>
</tbody>
</table>

Merania k ďalším bodom

Meranie k ďalším bodom sa vykonáva len meraním vertikálneho uhla. Výškový rozdiel voči 1. referencnému bodu sa zobrazuje kontinuálne.

<table>
<thead>
<tr>
<th>Zmerajte Bod 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vu</td>
</tr>
<tr>
<td>Hv</td>
</tr>
<tr>
<td>dVýš</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N. Výš</th>
<th>Nové (ďalšie) nepriame meranie výšok, založené na novom referencnom bode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulož</td>
<td>Uložíť výsledky.</td>
</tr>
</tbody>
</table>

11.9 Určenie bodu vo vztahu k osi

11.9.1 Princíp aplikácie Bod k osi

Pomocou aplikácie "Bod k osi" sa dá určiť pozícia nejakého bodu (napríklad referencného bodu) vo vztahu k osi. Okrem toho sa dajú určovať body paralelné, v pravom uhle alebo v akomkoľvek želanom uhle, ako aj na existujúcej osi. Táto aplikácia je zaujívať najmä vtedy, keď sa napríklad majú na lavičku na vytyčovanie základov umiestniť klínce, na označenie paralelných osí na stavbe.

Aplikácia pozostáva z dvoch krokov:

1. Definovanie osi.
2. Výber alebo meranie referencného bodu.

Ak je stanica postavená v režime súradníck/grafickom režime, dajú sa os a referenčný bod určiť priamo z pamäte.
Ak stanica ešte nie je postavená, musí sa os určiť meraním počiatočného a koncového bodu osi. Referenčný bod sa určuje aj priamym meraním.
11.9.2 Určenie osi

Meranie alebo výber prvého bodu osi

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>Lin. bod 1</th>
<th>(L_{b1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu</td>
<td>72° 53' 25''</td>
<td></td>
</tr>
<tr>
<td>Vu</td>
<td>76° 48' 45''</td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>4.399 m</td>
<td></td>
</tr>
</tbody>
</table>

Nanovo pomenovať bod na referenčnej osi, alebo vybrať z pamäte.

Späť Mer Dalej

Meranie alebo výber druhého bodu osi

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>Lin. bod 2</th>
<th>(L_{b2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu</td>
<td>88° 57' 20''</td>
<td></td>
</tr>
<tr>
<td>Vu</td>
<td>76° 49' 05''</td>
<td></td>
</tr>
<tr>
<td>Hv</td>
<td>4.318 m</td>
<td></td>
</tr>
</tbody>
</table>

Nanovo pomenovať bod na referenčnej osi, alebo vybrať z pamäte.

Späť Mer Dalej

Posunutie osi
Počiatočný bod osi sa dá presunúť, ak chcete použiť inú referenciu ako počiatok systému súradníc. Ak je zadaná hodnota kladná, posunie sa os dopredu, ak je záporná, posunie sa smerom dozadu. Počiatočný bod bude pri kladnej hodnote posunutý doprava, pri zápornej hodnote smerom doľava.

<table>
<thead>
<tr>
<th>Posunutie ref linie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dĺžka</td>
</tr>
<tr>
<td>Prieč.</td>
</tr>
</tbody>
</table>

Návrat na predchádzajúce zobrazenie.

Späť Mer Dalej

Otočit’ os.

Prejst’ ďalej na ďalší krok.
Rotácia (otočenie) osi
Smerovanie osi sa dá otočiť okolo počiatočného bodu. Pri zadanií kladných hodnôt sa os otočí v smere hodinových ručičiek, pri zadanií záporných hodnôt sa otočí proti smeru hodinových ručičiek.

Zadávanie Uhlové jednotky

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>←</td>
<td>→</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>.</td>
</tr>
</tbody>
</table>

Zruš OK

Návrat na predchádzajúce zobrazenie.

Potvrdiť rotáciu.
11.9.3 Kontrola bodov vo vztahu k osi

Zmeranie alebo výber referenčného bodu

Výber n. mer konl. bod

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dĺžka</td>
<td>2.829 m</td>
</tr>
<tr>
<td>Prieč.</td>
<td>0.012 m</td>
</tr>
</tbody>
</table>

Vybrať bod z pamäte.

Spustenie merania k bodu.

Zobrazenie nameraných alebo vybraných bodov vo vztahu k referenčnej osi.

Ulož výsledky merania.

Nanovo určiť referenčnú os.

12. Dáta a manipulácia s nimi

12.1 Úvod

Tachymetre Hilti ukladajú dáta zásadne v internej pamäti. Dátní sa rozumejú hodnoty merania, to znamená hodnoty uhlov a vzdialeností, v závislosti od nastavení či aplikácie hodnoty vztahujúce sa na stavebné osi, ako je napríklad dĺžka a prieč., alebo súradnice. Pomocou PC-softvéru sa dajú dáta vymieňať s ostatnými systémami. V principe je potrebné chápať všetky dáta tachymetrov ako dáta bodov, s výnimkou grafických dát, pri ktorých sú body spojené s grafikou. Na výber, resp. použitie sú tu k dispozícii zodpovedajúce body, nie grafika, ktorá je dostupná len ako doplnjúca informácia.

12.2 Dáta bodov

12.2.1 Body ako meracie body

Dáta merania sú namerané body, ktoré boli vytvorené a uložené na tachymetri ako body súradníc, z relevantných aplikácií, ako je napríklad H-vytýčenie, V-vytýčenie, Premeranie (Premer.) a Meranie a zaznamenanie. Meracie body existujú v rámci jednej stanice iba jedenkrát. Keď sa rovnaký názov opätovne použije ako merací bod, je možné existujúci merací bod prepísať alebo k nemu zadať iný názov bodu. Meracie body nie je možné upravovať.
12.2.2 Body ako body súradníc

Keď sa pracuje v nejakom systéme súradníc, sú spravidla všetky pozície určené názvom bodu a súradnicami, na opísanie pozície bodu je však minimálne potrebný názov bodu a dve horizontálne hodnoty súradníc X, Y alebo E, N a pod.

Výška vo všeobecnosti nie je závislá od hodnot súradníc XY.

Tachymeter využíva body ako body súradníc, tzv. kontrolné alebo fixné body a meracie body so súradnicami.

Fixné body sú body s danými súradnicami, ktoré sa manuálne zadávajú na tachymetri alebo boli prenesené pomocou programu Hilti PROFIS Layout, prostredníctvom pamäťového média USB, alebo priamo dátovým káblom USB.

Tieto fixné body môžu byť aj bodmi vytvorené. Kontrolný bod (fixný bod) existuje v projekte iba raz.

Kontrolné a fixné body sa dajú na tachymetri upravovať, predpokladom však je, aby pri bode nebol pripojený žiadny grafický prvok.

12.2.3 Body s grafickými prvkami

Na prístroji je možné nechať načítať, znázorniť a vyberať grafické údaje z prostredia CAD, a to s použitím programu Hilti PROFIS Layout.

Systém Hilti umožňuje vytvárať body a grafické prvky z rôznych tráh, s použitím programu Hilti PROFIS Layout a tieto dátá preniesť na tachymeter, prípadne ich použiť.

Body s pripojenými grafickými prvkami nie je možné upravovať na tachymetri, úprava sa vykonáva na počítači s programom Hilti PROFIS Layout.

12.3 Vytváranie dát bodov

12.3.1 S tachymetrom

Každé meranie vytvorí dátový záznam o meraní alebo vytvorí merací bod. Meracie body sú buď definované len ako hodnoty uhlov a vzdialenosti, názov bodu s hodnotami uhlov a vzdialenosti, alebo ako názov bodu so súradnicami.

12.3.2 S programom Hilti PROFIS Layout

1. Vytvorenie bodov z rozmerov v pláne, prostredníctvom konštrukcie linií, kriviek a znázornenie s grafickými prvkami

V programe "Hilti PROFIS Layout" sa dá z rozmerov uvedených v pláne, prípadne zo vzdialenosti uvedených v stavebnom pláne, vygenerovať grafika, ktorá je akousi reprodukcio stavebného plánu.

V počítačovom softvéri sa na tento účel plán graficky znova vytvorí na počítači v zjednodušenej podobe tak, aby línie, krivky a pod. vznikli ako body s grafickým uložením.

Taktiež je možné vytvárať tu špecifické krivky, z ktorých sa dajú vytvoriť body, napríklad v pravidelných odstupoch.

2. Vytvorenie bodov z importu CAD a dát, kompatibilných s dátami CAD

Pomocou programu "Hilti PROFIS Layout" sa dajú dátá CAD, vo formátoch DXC alebo vo formáte DWG, kompatibilnou s programom AutoCAD, prenášať priamo na počítač.

Z grafických dát, povedzme línii, kriviek a pod. sa vytvorí body.

V programe Hilti PROFIS Layout je dostupná možnosť vytvoriť z grafických prvkov CAD dátách koncových bodov, priesčinkov línii, stredových bodov úsekov, kruhových bodov a podobne.

K takto vytvoreným dátam bodov budú viditeľne uložené pôvodné grafické prvky z CAD.

Dátá nachádzajúce sa v CAD môžu byť dostupné na rôznych "polohách". V programe "Hilti PROFIS Layout" sú tieto dátá pri prenášaní do prístroja zhrnuté na jednu "polohu".
UPOZORNENIE
Tu je obzvlášť potrebne dbať na to, aby sa pri organizácii dát na počítači, pred prenesením do prístroja, venovala zvýšená pozornosť hustote bodov, ktorá je očakávaná na konci procesu.

3. Import dát bodov z tabuliek alebo textových súborov
Dáta bodov je možné importovať z textových alebo XML-súborov do programu Hilti PROFIS Layout, upraviť ich a preniesť do tachymetra.

12.4 Pamäť dát
12.4.1 Interná pamäť tachymetra
Tachymeter Hilti ukladá v aplikáciách dáta, ktoré sú zodpovedajúcim spôsobom organizované. Dáta bodov a dáta merania sú v systéme organizované podľa projektov a stanicí s prístrojom.

Projekt
K jednému projektu patrí jedinečný blok kontrolných bodov (fixných bodov), prípadne bodov vytyčenia.
K jednému bodu môže patriť veľký počet stanicí.

Stanica s prístrojom plus orientácia (tam, kde je dôležité)
K jednej stanici patrí vždy jedna orientácia.
K jednej stanici patria meracie body s jednoznačným opisom bodov.

UPOZORNENIE
Jeden projekt je možné chápať asi ako jeden súbor.

12.4.2 Pamäťové médium USB
Pamäťové médium USB slúži na výmenu dát medzi počítačom a tachymetrom. Nepoužíva sa ako dodatočná pamäť pre dáta.

UPOZORNENIE
Ako aktívna pamäť pre dáta na tachymetri sa vždy používa interná pamäť tachymetra.

13. Správca dát tachymetra
13.1 Prehľad
Správca dát poskytuje prístup k interne uloženým dátam v tachymetri.
Správca dát poskytuje nasledujúce možnosti:

- Vytvorenie nového projektu, vymazanie a kopírovanie.
- Zadanie, upravovanie a vymazávanie kontrolných bodov, prípadne fixných bodov súradnic.
- Zobrazenie a vymazanie meracích bodov.
UPOZORNENIE
Kontrolné body, prípadne fixné body sa dajú upravovať len vtedy, keď nie sú prepojené s grafikou.

13.2 Výber projektu
Po spustení Správcu dát sa zobrazí zoznam projektov, ktoré sú dostupné v internej pamäti. Najskôr je potrebné zvoliť existujúci projekt, funkcie pre body a meracie body sa aktivujú až potom.

Zvolte projekt

<table>
<thead>
<tr>
<th>Projekt</th>
<th>BLD</th>
<th>BL</th>
<th>VADUZ</th>
<th>GASSNER_MR</th>
<th>LOP</th>
</tr>
</thead>
</table>

Späť | Info | Kóp | Zmaz | Nové |

Podr. projektu

<table>
<thead>
<tr>
<th>Projekt</th>
<th>BLD</th>
</tr>
</thead>
</table>

Dátum 28/06/11
Čas 06:42
Počet bodov 24
Počet Stan 1

Späť | Body | Mer.bod |

13.2.1 Fixné body (kontrolné body a body vytýčenia)
Po výbere príslušného projektu sa dajú - výberom volby Body - zadávať body so súradnicami alebo je možné existujúce body so súradnicami upravovať alebo vymazať.
13.2.1.1 Zadávanie bodu so súradnicami
Manuálne zadanie názvu bodu a súradnic.
Ak by už názov bodu existoval, zobrazí sa príslušné upozornenie na zmenu názvu bodu.

UPOZORNENIE
Pri aktuálne použitnej funkcií je príslušné tlačidlo "sivé".

13.2.1.2 Výber bodov zo zoznamu alebo grafického znázornenia
Dále sa zobrazí výber bodov zo zoznamu a grafiky.
13.2.1.3 Vymazanie a úprava bodov

Po výbere a potvrdení bodu sa dá bod v nasledujúcom zobrazení vymazať alebo zmeniť. Pri zmene sa dajú meniť len súradnice a výška, nie však názov bodu. Na zmenu názvu bodu je potrebné zadať bod s novým názvom.

Zobrazte dáta bodov

<table>
<thead>
<tr>
<th>Bod ID</th>
<th>GOW_1...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výc</td>
<td>1.000 m</td>
</tr>
<tr>
<td>Sev</td>
<td>0.500 m</td>
</tr>
<tr>
<td>Výš</td>
<td>1.650 m</td>
</tr>
</tbody>
</table>

UPOZORNENIE

Body s pripojenou grafikou sa nedajú ani meniť a ani vymazať. Táto možnosť je k dispozicí len na počítači s programom Hilti PROFIS Layout.

13.2.2 Meracie body

Po výbere príslušného projektu je možné zobrazíť stanice s meracími bodmi, ktoré im prislúchajú. Pritom je možné aj staniciu, spolu so všetkými k nej prislúchajúcimi dátami merania, vymazat. Na vykonanie tohto úkonu je potrebné vybrať si pri zvolení projektu voľbu Meracie body.

13.2.2.1 Výber stanice

Ďalej je znázornený výber stanice prostredníctvom manuálneho zadania názvu stanice, zo zoznamu a grafiky.
13.2.2.2 Výber meracieho bodu

Po výbere stanice sa dá zadáť merací bod na manuálne vyhľadanie, alebo je možný výber zo zoznamu meracích bodov alebo z grafického zobrazenia.
13.2.2.3 Vymazanie a zobrazenie meracích bodov

Po výbere meracieho bodu je možné zobraziť hodnoty merania a súradnice a merací bod vymazať.

13.3 Vymazanie projektu

Predtým než sa projekt vymaže, zobrazí sa príslušný potvrzovací dialóg s možnosťou opätovného prezretia si podrobných informácií o projekte.

UPOZORNENIE

Ak sa projekt vymaže, budú stratené všetky dáta, ktoré súvisia s projektom.
13.4 Vytvorenie nového projektu

Pri zadávaní nového projektu je potrebné dávať pozor na to, aby sa názov projektu nachádzal v pamäti iba raz.

![Nový názov projektu](image)

Zadanie názvu projektu.

Prerušenie a návrat na výber projektu.

Potvrdenie a prevzatie zadaní.

13.5 Kopírovanie projektu

Pri kopírovaní projektu je k dispozícii viacero rôznych možností:

- Z internej do internej pamäte.
- Z internej pamäte na cieľové médium USB.
- Z cieľového média USB do internej pamäte

Pri procese kopírovania sa dá zmeniť názov projektu v cieľovej pamäti.
Tak je možné projekt premenovať aj jeho skopírovaním a vytvorit' duplikát dát o projekte.

![Skopírujte projekt](image)

Volba základnej pamäte.

Volba cieľovej pamäte.

Prerušenie a návrat na predchádzajúce zobrazenie.

Potvrdenie a prevzatie zadaní.

UPOZORNENIE

V prípade, že sa názov projektu už nachádza v cieľovej pamäti, je potrebné zvoliť iný názov, alebo vymazať existujúci projekt.
14. Výmena dát s PC

14.1 Úvod

Výmena dát medzi tachymetrom a PC prebieha vždy v spojení s PC-programom Hilti PROFIS Layout.
Preosené dátu sú binárnym dátami a bez týchto programov sa nedajú načítať.
Výmena dát sa dá uskutočniť buď prostredníctvom dodaného dátového kábla USB alebo pamäťového média USB.

14.2 Hilti PROFIS Layout

Dátu sú v zásade vymieňané ako úplný projekt, čo znamená, že medzi tachymetrom Hilti a programom Hilti PROFIS Layout dochádza k výmene všetkých dát patriacich k jednému projektu.
Preok až sa obsahováť samotné kontrolné alebo fixné body s grafikou alebo bez nej, alebo kombinovane, to znamená a kontrolnými alebo fixnými bodmi a meracími bodmi (dátami merania), vrátane výsledkov z príslušných aplikácií.

14.2.1 Typy dát

Dátu bodov (kontrolné body, prípadne body vytýčenia)
Kontrolné body sú súčasne aj bodmi vytýčení a môžu byť vybavené grafickými prvkami na uľahčenie identifikácie alebo načrtnutie situácie.
Ak budú tieto body preosené z PC na tachometer s grafickými prvkami, budú sa tieto dát na tachometri zobrazovať s grafikou.
Ak sa kontrolné body a body vytýčenia na tachometri zadávajú neskôr manuálne, nie je možné k nim na tachometri priradiť alebo pridať nijaké grafické prvky.

Dátu merania
Meracie body, prípadne dátu merania a výsledky aplikácií sa zásadne prenášajú len z tachymetra do programu Hilti PROFIS Layout.
Preosené meracie body sa môžu prenášať a na ostatných systémoch ďalej spracovať ako dátu bodov v textovom formáte s medzerou, s oddelením čiarkou (CSV) alebo v iných formátoch, ako je DXF a AutoCAD DWG.
Výsledky aplikácií, ako sú napríklad rozdiely vytýčenia, plošné výsledky a podobne môžu byť programom Hilti PROFIS Layout vytvorené v textovom formáte ako "záznamy".

Zhrnutie
Medzi tachymetrom a programom Hilti PROFIS Layout sa dajú vzájomne vymieňať nasledujúce dátu.
Z tachymetra do programu Hilti Profis Layout:

- Dátua merania: Názov bodu, uhol a vzdialenosť.
- Dátua bodov: Názov bodu, súradnice + výška.

Z programu Hilti Profis Layout do tachymetra:

- Dátua bodov: Názov bodu, súradnice + výška.
- Grafické údaje: Súradnice s grafickými prvkami.

UPOZORNENIE

Výmena medzi tachymetrom a inými PC-systémami nie je dostupná priamo, len prostredníctvom programu Hilti PROFIS Layout.

14.2.2 Výstup dát v programe Hilti PROFIS Layout (export)

Dátua sa ukladajú v nasledujúcich aplikáciách a dajú sa pomocou programu Hilti PROFIS Layout exportovať v rôznych formátoch:

1. Horizontálne vytýčenie
2. Vertikálne vytýčenie
3. Premeranie
4. Meranie a zaznamenanie
5. Meranie plochy (plošný výsledok)

Výstupné dátu

Program Hilti PROFIS Layout číta dátu uložené totálnou stanicou a extrahuje nasledujúce dátu:

1. Názov bodu, horizontálny uhol, vertikálny uhol, vzdialenosť, výška reflektora, výška prístroja
2. Názov bodu, súradnica Vých, súradnica Sev, výška
3. Výsledky aplikácie, ako sú rozdiely vytýčenia a plošné merania

Výstupné formáty

Formát CSV	Čiarkou oddeľované jednotlivé dátu.
Formát DXF	CAD-kompatibilný formát výmeny textových dát.
Formát DWG	Binárny formát dát, kompatibilný s AutoCad.

14.2.3 Vstup dát do programu Hilti PROFIS Layout (import)

Vstupné dátu

S programom Hilti PROFIS Layout sa dajú čítať, konvertovať a prenášať na tachymeter (priamo cez kábel alebo na pamäťovom médii USB) nasledujúce dátu:

1. Názovy bodov (fixné body) so súradnicami a výškami.
2. Poly-línie (línie, krivky) z iných systémov

Vstupné formáty

Formát CSV	Čiarkou oddeľované dátu.
Formát txt	Medzerou oddelené dátu.
Textový formát	Medzerou oddelené odseky tak, že jednotlivé dátu sa nachádzajú v stĺpcoch.
15. Dátová prípojka s RS 232
Tachymeter Hilti obsahuje dátové rozhranie RS 232, ku ktorému je možné pripojiť zariadenie na zaznamenávanie dát.
Pre ďalšie informácie sa prosím obráťte na svojho poradcu u spoločnosti Hilti.

16. Kalibrácia a nastavenie

16.1 Kalibrácia v teréne
Prístroj je pri expedícii z výroby správne nastavený.
Na základe výkyvov teploty, pohybov pri preprave a zastarávania je možné, že sa nastavené hodnoty prístroja časom zmenia.
Preto je prístroj vybavený funkciou na kontrolo nastavených hodnôt a prípadnú opravu pomocou kalibrácie v teréne.
Na tento účel sa prístroj bezpečne postaví s použitím kvalitného statického a použije sa dobre viditeľný, presne identifikovateľný cieľ v rozmedzí ±3 stupňov voči horizontele vo vzdialenosti cca 70 – 120 m. Potom sa vykoná meranie v polohy ďalekohľadu 1 a v polohy ďalekohľadu 2.

UPOZORNENIE
Tento postup je interaktivne podporovaný aj zobrazením na displeji tak, aby bolo potrebné iba sledovať pokyny.

Táto aplikácia kalibruje a nastaví nasledujúce tri osi prístroja:

- Cieľová os
- Vu-kolimácia (Vu kolim)
- Dvojsovový kompenzátor (obidve osi)

16.2 Vykonanie kalibrácie v teréne

UPOZORNENIE
Prístroj obsluhujte opatrne, aby sa zabránilo kmitaniu a otriasom.

UPOZORNENIE
Pri kalibrácii v teréne je potrebné postupovať mimoriadne starostlivá a vyžaduje sa presná práca.
Nepresným cielením alebo otriasmi prístroja môžu byť zistené nesprávne kalibračné hodnoty, ktoré môžu ďalej spôsobovať chybné merania.

UPOZORNENIE
V prípade pochybností odovzdajte prístroj na kontrolu do servisu spoločnosti Hilti.
1. Prístroj postavte bezpečným spôsobom, s použitím dobrého statív.
2. V ponuke aplikácie si vyberte volbu Konfigurácia.

![Konfigurácia](image)

![Kalibrácia](image)

4. Spustite proces kalibrácie alebo potvrďte zobrazené kalibráčné hodnoty a nepokračujte na novú kalibráciu.

![Spustenie procesu kalibrácie](image)

5. Vyberte si presne rozpoznateľný cieľ v rozsahu ± 3 stupne voči horizontále, vo vzdialenosti, cca 70 - 120 m a pozorne naň zacieľte.

UPOZORNENIE Vyhľadajte si vhodný cieľ, na ktorý je možné zodpovedajúco dobre zacieliť.

UPOZORNENIE Ak sa prístroj nenachádza v 1. pozícií ďalekohľadu, objaví sa príslušná požiadavka na displeji.
Potom budete požiadaní o zmenu na 2. pozíci ãalekohľadu.

7. Opatné otoãte prístroj do 2. pozície ãalekohľadu.

8. Znova zaciele ten istý cieã v rozmerní ± 3° voãi horizonãále.

UPOZORNENIE Tento úkon je podporovaný aj zobrazením na displeji tak, že sa zobrazia rozdiely pre zvislý kruh a vodorovný kruh. To slúãí výluãné na ulahãenie pri vyhľadávaní cieãa.

UPOZORNENIE Hodnoty by sa mali pribliãovať "nule", prípadne by sa mali odli‰ovať iba o niekoľko sekúnd, keď je na cieã zacielené v druhej polohe ãalekohľadu.

Pри úspeãných meraniach v obidvoch pozíciách ãalekohľadu sa zobrazia nové a pôvodné hodnoty nastavenia pre Vu-kolimáciu (Vu kolim) a cieãovú os.
10. **Preverite a uložte nové kalibračné hodnoty.**

UPOZORNENIE Vyššie uvedeným postupom kalibrácie pre Vu-kolimáciu a cieľovú os, boli taktiež zistené aj nové hodnoty nastavenia pre 2-osový kompenzátor.
Pri preberaní nových kalibračných hodnôt sú preberané aj nové hodnoty nastavenia pre kompenzátor.

16.3 Kalibračný servis Hilti

Prístroje odporúčame nechať pravidelné kontrolovať v kalibračnom servise Hilti, aby sa mohla zaistiť ich spoľahlivosť podľa noriem a právných predpisov.
Kalibračný servis Hilti je vám kedykoľvek k dispozícii; kalibráciu však odporúčame nechať vykonáť minimálne raz za rok.
V kalibračnom servise Hilti sa potvrďí, že špecifikácie kontrolovaného prístroja v deň kontroly zodpovedajú technickým údajom v návode na obsluhu.
Pri odchýlkach od údajov výrobcu sa používané meracie prístroje opät' nanovo nastaví.
Po nastavení a kontrole sa na prístroj upevni kalibračný štítok a certifikátem o kalibrácii sa potvrdí, že prístroj pracuje v rozsahu údajov výrobcu.
Certifikáty o kalibrácii sú vždy požadujú od firiem, ktoré sú certifikované podľa normy ISO 900X. Ďalšie informácie vám radi poskytnú vo vašom najbližšom zastúpení spoločnosti Hilti.

17. Údržba a ošetrovanie

UPOZORNENIE
Poškodené diely dajte vymeníť v servise firmy Hilti.

17.1 Čistenie a sušenie

Zo skla sfúknite prach.
POZOR
Nedotýkajte sa skla prstami.

Prístroj čistite len čistou, mäkkou utierkou. V prípade potreby ju navlhčite čistým alkoholom alebo vodou.
POZOR
Nepoužívať iné kvapaliny, než alkohol a vodu. Mohli by poškodiť plastové diely.

UPOZORNENIE
Poškodené diely dajte vymeníť v servise firmy Hilti.

17.2 Skladovanie

UPOZORNENIE
Prístroj neskladujte vo vlhkom stave. Pred uložením a skladovaním ho nechajte uschnúť.

UPOZORNENIE
Pred skladovaním prístroja, prepravné puzdro a príslušenstvo vždy vyčistite.
18. Likvidácia

VÝSTRAHA
Pri nevhodnej likvidácii vybavenia môžete dôjsť k nasledujúcim efektom:
Pri spaľovaní plastových dielov vznikajú jedovaté plyny, ktoré môžu ohrozovať zdravie.
Ak sa akumulátory poškodia alebo silne zohrejú, môžu explodovať a pritom spôsobiť otravy,
popáleniny, poleptanie alebo môžu znečistiť životné prostredie.
Pri nedbalej likvidácii umožňujete zneužitie vybavenia nepovolanými osobami. Pritom môže dôjsť
k t’ažkému poraneniu tretích ľudí, ako aj k znečisteniu životného prostredia.

Prístroje značky Hilti sú z veľkej časti vyrobené z recyklovateľných materiálov. Predpokladom na
opakované využitie recyklovateľných materiálov je ich správna separácia. V mnohých krajinách je
spoločnosť Hilti už pripravená na príjem vášho prístroja na recykláciu. Informujte sa v zákazníckom
stredisku spoločnosti Hilti alebo u vášho obchodného poradcu.

Iba pre krajiny EÚ
Elektronické meracie prístroje neodhadzujte do domového odpadu!
Podľa európskych smerníc 2002/96/ES a 2006/66/ES o opotrebovaných elektrických
a elektronických prístrojoch v znení národných predpisov, sa opotrebované elektrické
ručné náradie a akumulátory musia podrobiť rozličné separovanej a ekologickej recyklácii.

Akumulátory likvidujte v súlade s národnými predpismi. Pomáhajte prosím chrániť
životné prostredie.
19. Záruka výrobcu prístrojov

Hilti ručí, že dodaný výrobok je bezchybný z hľadiska použitného materiálu a technologic-kého postupu výroby. Táto záruka platí iba za predpokladu, že výrobok sa správne používa a obsluhuje, ošetrová a čistí v súlade s návodom na používanie Hilti a že je zaručená technická jednotnosť, t. j. že s výrobkom sa používa iba originálny spotrebný materiál, príslušenstvo a náhradné diely Hilti.

Táto záruka zahŕňa bezplatnú opravu alebo bezplatnú výmenu chybných častí počas celej životnosti výrobku. Časti, podliehajúce normálnemu opotrebovaniu, do tejto záruky nespadajú.

Uplatňovanie ďalších nárokov je vylúčené, po-kiaľ takéto vylúčenie nie je v rozpore s národ-nými predpismi. Hilti neručí najmä za priame alebo nepriame poruchy alebo z nich vyplývajúce následné škody, straty alebo náklady v súvislosti s používaním alebo z dôvodov nemožnosti používania výrobku na akýkoľvek účel. Implicitné záruky predajnosti alebo vhodnosti použitia na konkrétnej účel sú vylúčené.

Výrobok alebo jeho časti po zistení poruchy neokladne odošliete na opravu alebo výmenu príslušnej obchodnej organizácií Hilti.

Záruka zahŕňa všetky záručné záväzky zo strany spoločnosti Hilti a nahrádza všetky predchádzajúce alebo súčasné vyhlásenia, písomné alebo ústne dohovory, týkajúce sa záruky.

20. Upozornenie FCC (platné v USA) / upozornenie IC (platné v Kanade)

POZOR
Tento prístroj v testoch dodržal hraničné hodnoty, ktoré sú stanovené v odseku 15 ustanovení FCC (elektromagnetická a rádiová interfe-rencia) pre digitálne prístroje triedy B. Tieto hraničné hodnoty predstavujú pre inštaláciu v obývaných oblastiach dostatočnú ochranu pred rušivým vyžarovaním. Prístroj tohto druhu generuje a používá rádiové frekvencie a môžu ich aj vyžarovať. Preto, ak nie sú inštalované a nepoužívané sa v súlade s pokynmi, môžu spôsobovať rušenie príjmu rádiového signálu.

Nemožno však zaručiť, že pri určitých inštaláciách nedôjde k rušeniu. Ak tento prístroj spôsobuje rušenie príjmu rádiového alebo televízneho signálu, čo možno zistit’ vypnutím a opätovným zapnutím prístroja, odporúčame používateľovi odstrániť rušenie pomocou nasledujúcich opatrení:

- Nanovo nastavit’ alebo premiestniť prijímaciu anténu.
- Zváčšiť vzdialenosť medzi prístrojom a prijímačom.
- Požiadať o pomoc predajcu alebo skúseného rádiotechnika a televízneho technika.

UPOZORNENIE
Zmeny alebo úpravy, ktoré nie sú výslovne povolené spoločnosťou Hilti, môžu obmedziť práva používateľa na uvedenie prístroja do prevádzky.
21. ES vyhlásenie o zhode

Označenie: Tachymeter
Typové označenie: POS 15/18
Rok výroby: 2010

Na vlastnú zodpovednosť vyhlasujeme, že tento výrobok je v súlade s nasledujúcimi smernicami a normami: EN 61000-6-1, EN 61000-6-3, 2006/95/EG, 2004/108/EG.

Hilti Corporation

Dietmar Sartor
Head of BA Quality and Process Management
Business Area Electric Tools & Accessories
08 2010

Tassilo Deinzer
Head BU Measuring Systems
BU Measuring Systems
08 2010

Index

A
Akumulátor 112, 128, 132
POA 80 113
vloženie a výmena 128
Atmosférické korekcie 141
Atmosférické vplyvy 142

B
Bod k osi 192
Body vytýčenia 199

C
Ciele 124

Č
Čas a dátum 139

D
Dátové body 126
Dotyková obrazovka
rozdelenie 130
veľkosť 129

Dotyková obrazovka (Touchscreen)
alfanumerická klávesnica 131
numerická klávesnica 130
všeobecné ovládacie prvky 131
Dvojsový kompenzátor 123

E
Elektronická libela 141

F
Fixný bod 199
Funkčné tlačidlá 129

H
Hilti PROFIS Layout 205
vstup dát (import) 206
výstup dát (export) 206
Horizontálne výtúčenie
(H-výtúčenie) 161

I
Indikácia sklonu
zvislé 136
Informácia o projekte 144

K
Kalibrácia v teréne 207
Kalibráčný servis Hilti 210
Konfigurácia 137

Kontrola bodov
vo vztahu k osi 196
Kontrola funkcie 129
Kontrolné body 199
Korekcia
atmosférické vplyvy 142

L
Laserová olovnica 107
Laserpointer 126, 141
indikácia stavu 132

M
Meráci bod 201
vymazanie a zobrazenie 203
Merania výšok 125
Meranie a zaznamenanie 183
so stavebnými osami 184
so súradnicami 185
Meranie plochy 188
Meranie rozpätia 181
Meranie vzdialeností 123

N
Nabíjačka
POA 82 113
Nepriame určovanie výšok 190, 192

O
Objektív 107
Odčítavanie z kruhu 135-136
Okulár 107
Osvetlenie displeja 141
Ovládacie panel 129

P
POA 50
reflektorová výtyčka (s metrickými
jednotkami) 113
POA 51
reflektorová výtyčka (s imperiálnymi
jednotkami) 113
POA 80
akumulátor 113
POA 82
nabíjačka 113
POAW-4
reflexná fólia 113
Polohy dalekohľadu 120
Pomoc pri navádzaní 107, 126, 141
Ponuka funkcií
FNC 140

Postavenie prístroja 133
nad rúrky a pomocou laserovej
olovnice 134
Pozícia stanice 152
Premeranie 176
so stavebnými osami 177
so súradnicami 179
Princíp merania 122
Prístroj
postavenie 133
Projekt
kopírovanie 204
výber 199
vymazanie 203
vytvorenie nového 143, 204
Projekty 143

R
Reflektorová výtyčka 112
POA 50 113, 124
POA 51 113
Reflexná fólia
POAW-4 113
RS 232 207

S
Siet’ový adaptér 112
POA 81 113
Statív PUA 35 114
Stavebné osi 119
Súprava nastavovacích
ktúčov 112, 114
Súradnice 118

T
Tachymeter 112
vypnutie 133
Teodolít 134
Transportná rukoväť 107
Trojnožka 107
Typy dát 205
<table>
<thead>
<tr>
<th>U</th>
<th>V</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Určenie osi</td>
<td>Vertikálne vyrovnanie</td>
<td>Zadávanie bodov</td>
</tr>
<tr>
<td>................................. 194</td>
<td>................................. 187</td>
<td>úprava bodov 201</td>
</tr>
<tr>
<td>Vertikálne vytýčenie</td>
<td>Vertikálny pohon</td>
<td>výber bodov 127, 200</td>
</tr>
<tr>
<td>V-vytýčenie</td>
<td>Voľné umiestnenie</td>
<td>vymazanie bodov 201</td>
</tr>
<tr>
<td>so stavebnými osami</td>
<td>................................. 154, 156</td>
<td>so súradnicami</td>
</tr>
<tr>
<td>so súradnicami</td>
<td>................................. 170</td>
<td>Zadávanie bodu</td>
</tr>
<tr>
<td>Výber meracieho bodu</td>
<td>................................. 174</td>
<td>so súradnicami</td>
</tr>
<tr>
<td>Výber projektu</td>
<td>................................. 202</td>
<td>Zadávanie bodu stanice</td>
</tr>
<tr>
<td>Výber stanice</td>
<td>................................. 143</td>
<td>Zadávanie cieľového bodu</td>
</tr>
<tr>
<td>Vypínanie prístroja</td>
<td>................................. 201</td>
<td>Zaostrovacia skrutka</td>
</tr>
<tr>
<td>................................. 133</td>
<td>Zapnutie prístroja</td>
<td>................................. 132</td>
</tr>
<tr>
<td>................................. 135</td>
<td>Zobrazenie aktívneho projektu</td>
<td>................................. 143</td>
</tr>
<tr>
<td>.................................</td>
<td>Zobrazenie vodorovného kruhu</td>
<td>................................. 135</td>
</tr>
</tbody>
</table>