

HDI-P TZ AND HDI-TZ TECHNICAL SUPPLEMENT

Edition 2024

HDI-P TZ AND HDI-TZ DROP-IN ANCHORS

PRODUCT DESCRIPTION

HDI-P TZ and HDI-TZ Flush Anchors

Anchor System	Features and Benefits	
	Carbon steel HDI-P TZ and HDI-TZ	 Drop-in anchor with optimized length for reliable fastenings in post-tensioned cable concrete slabs Suitable for uncracked and cracked concrete including seismic areas Productive installation with HDI-P TZ and
THORITAIN OF THE PARTY OF THE P	Auto-setting tool HDI-P TZ and HDI-TZ	HDI-TZ automatic setting tool with hammer drill Used with Hilti Dust Removal System (DRS) for compliance with Table 1 of OSHA 1926.1153 regulations for silica dust exposure Shallow drilling for faster installations
	Hand-setting tool HDI-P TZ and HDI-TZ	 Easier installation with Auto Setting Tool Lip provides flush installation, consistent anchor depth, and easier rod alignment Auto Setting Tool includes stop drill bit and setting tool, no tool change necessary

Uncracked concrete

Cracked concrete

Hollow core concrete

Seismic design categories A-F

Fire sprinkler listings

PROFIS Engineering design software

Approvals/Listings	
ICC-ES (International Code Council)	ESR-4236 in concrete per ACI 318 Ch. 17 / ACI 355.2 / ICC-ES AC193
City of Los Angeles	2023 LABC Supplement (within ESR-4236)
Florida Building Code	2023 FBC Supplement (within ESR-4236)
FM (Factory Mutual)	Pipe hanger components for automatic sprinkler systems 3/8" HDI-P TZ (up to 4-inch nominal pipe diameter) 3/8" HDI-TZ (up to 4-inch nominal pipe diameter) 1/2" HDI-TZ (up to 8-inch nominal pipe diameter) 5/8" HDI-TZ (up to 12-inch nominal pipe diameter)
UL (Underwriters Laboratory)	Pipe hanger components for automatic sprinkler systems 3/8" HDI-P TZ (up to 4-inch nominal pipe diameter) 3/8" HDI-TZ (up to 4-inch nominal pipe diameter) 1/2" HDI-TZ (up to 8-inch nominal pipe diameter) 5/8" HDI-TZ (up to 12-inch nominal pipe diameter)

MATERIAL SPECIFICATIONS

HDI-P TZ and HDI-TZ drop-in anchors are manufactured from carbon steel with zinc plating per DIN EN ISO 4042 A2K.

INSTALLATION PARAMETERS

Table 1 — HDI-P TZ and HDI-TZ Setting Information

							Nomina	I Anchor Size /	Internal Thread	Dia. (in)	
Setting	Information	Symbol	Units			HDI-	P TZ			HDI-TZ	
				1	/4	3	/8	1/2	3/8	1/2	5/8
Interna	l Thread Diameter	d	in.		1/4	3/8		1/2	3/8	1/2	5/8
Nominal Bit Diameter		d _{bit}	in.	9/16		9/	16	5/8	9/16	5/8	27/32
Effective Embedment			in.	in. 3/4		3	/4	1	1.42	1.65	3
		h _{ef}	(mm)	(1	9)	(1	9)	(25)	(36)	(42)	(76)
	Nominal Embedment		in.	3	3/4	3	/4	1	1-9/16	2	3-1/4
Nomina	Nominal Embedment		(mm)	(1	9)	(1	9)	(25)	(40)	(51)	(83)
			in.	3	3/4	3	/4	1	1-9/16	2	3-1/4
Hole Depth in Base Material		h _o	(mm)	(1	9)	(19)		(25)	(40)	(51)	(83)
TI 15			in. 3/16		3	/8	1/2	3/8 - 5/8	1/2 - 7/8	5/8 - 1-3/8	
Thread Engagement Length		h _s	(mm)	(5)	(1	0)	(13)	(10-16)	(13-22)	(16-35)
Maxim	um Installation Torque for Threaded	_	ft-lb	4	.2	5	.0	10.4	5.0	10.4	20.8
Elemer		T _{max}	(Nm)	(6)	(7	7)	(14)	(7)	(14)	(28)
	Min. Base Material Thickness	h	in.	2-1/2	4	2-1/2	4	4	3-1/4	4	6
Φ	Willi. Dase Waterial Trickness	h _{min}	(mm)	(64)	(102)	(64)	(102)	(102)	(83)	(102)	(152)
Concrete	Minimum Edge Distance	C _{min}	in.	6	2-1/2	6	2-1/2	2-1/2	3	6	8
Son	William Edge Dietanee	min	(mm)	(152)	(64)	(152)	(64)	(64)	(76)	(152)	(203)
O	Minimum Anchor Spacing	S _{min}	in.	8	3	8	3	3	6	7	9
	Williman / Monor opacing	S _{min}	(mm)	(203)	(76)	(203)	(76)	(76)	(152)	(178)	(229)
<u>0</u>	<u>φ</u> Min. Base Material Thickness		in.	1-	3/8	1-0	3/8	N/A	N/A	N/A	N/A
Min. Base Material Inickness	h _{min}	(mm)	(3	35)	(3	5)	14/71	14// (14//	14/71	
Hollowcore	Minimum Edge Distance		in.		6		6	N/A	N/A	N/A	N/A
ollo cret	William Lage Distance	C _{min}	(mm)	(1	52)	(15	52)	1 v/ /\	14//	13/7	19/7
H Ú	Min. Base Material Thickness Min. Base Material Thickness Minimum Edge Distance Minimum Anchor Spacing		in.		8	8	3	N/A	N/A	N/A	N/A
	William Allohol opacing	S _{min}	(mm)	(2	03)	(20	03)	11/7	13/7	18/7	18/74

Figure 1 — Hilti HDI-P TZ installation parameters

Figure 2 — Hilti HDI-TZ Installation Parameters

DESIGN DATA IN CONCRETE PER ACI 318

ACI 318 Chapter 17 Design

The design tables in Tables 2 to 11 are Hilti Simplified Design Tables. The load values were developed using the design parameters and variables of ICC Evaluation Services ESR-4236 and the equations within ACI 318 Chapter 17 as amended by ICC-ES AC193. The strength design capacities calculated from the tables below are to be compared to the factored loads determined from strength design load combinations. For a detailed explanation of the Hilti Simplified Design Tables, refer to Section 3.1.8 of Hilti's North American Anchor Fastening Technical Guide, Edition 22. Data tables from ESR-4236 are not contained in this section, but can be found at www.hilti.com or www.icc-es.org.

Table 2 — Hilti HDI-P TZ design strength based on concrete failure modes in uncracked concrete per ACI 318 Ch. 17 1,2,3,4,5

Nominal anchor diameter in.	Effective	Tension (lesser of concret	e breakout / pullo	out) - ΦN _n	Shear (lesser of concrete breakout or pryout) - ΦV_{n}			
	embed. in. (mm)	f' c = 2500 psi (17.2 MPa) lb (kN)	f' c = 3000 psi (20.7 MPa) lb (kN)	f' _c = 4000 psi (27.6 MPa) lb (kN)	f' c = 6000 psi (41.4 MPa) Ib (kN)	f' _c = 2500 psi (17.2 MPa) lb (kN)	f' c = 3000 psi (20.7 MPa) lb (kN)	f' _c = 4000 psi (27.6 MPa) lb (kN)	f' c = 6000 psi (41.4 MPa) Ib (kN)
1/4	3/4	310	340	395	485	350	385	445	545
1/4	(19)	(1.4)	(1.5)	(1.8)	(2.2)	(1.6)	(1.7)	(2.0)	(2.4)
0./0	3/4	310	340	395	485	350	385	445	545
3/8	(19)	(1.4)	(1.5)	(1.8)	(2.2)	(1.6)	(1.7)	(2.0)	(2.4)
1/0	1	480	525	605	745	540	590	685	835
1/2	(25)	(2.1)	(2.3)	(2.7)	(3.3)	(2.4)	(2.6)	(3.0)	(3.7)

¹ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Table 3 — Hilti HDI-P TZ design strength based on concrete failure modes in cracked concrete per ACI 318 Ch. 17 1,2,3,4,5

Nominal	Effective	Tension (lesser of concret	e breakout / pullo	out) - ΦN _n	Shear (lesser of concrete breakout or pryout) - $\Phi V_{\text{\tiny n}}$				
anchor diameter in.	embed. in. (mm)	f' _c = 2500 psi (17.2 MPa) lb (kN)	f'c = 3000 psi (20.7 MPa) Ib (kN)	f' _c = 4000 psi (27.6 MPa) lb (kN)	f' _c = 6000 psi (41.4 MPa) lb (kN)	f' _c = 2500 psi (17.2 MPa) lb (kN)	f' c = 3000 psi (20.7 MPa) lb (kN)	f' _c = 4000 psi (27.6 MPa) lb (kN)	f' c = 6000 psi (41.4 MPa) Ib (kN)	
1/4	3/4	190	200	220	255	250	270	315	385	
1/4	(19)	(8.0)	(0.9)	(1.0)	(1.1)	(1.1)	(1.2)	(1.4)	(1.7)	
2 /0	3/4	190	200	220	255	250	270	315	385	
3/8	(19)	(0.8)	(0.9)	(1.0)	(1.1)	(1.1)	(1.2)	(1.4)	(1.7)	
1/0	1	365	390	430	495	475	520	600	730	
1/2	(25)	(1.6)	(1.7)	(1.9)	(2.2)	(2.1)	(2.3)	(2.7)	(3.2)	

¹ Linear interpolation between embedment depths and masonry compressive strengths is not permitted.

1/2-in diameter = 0.68

² Tabular values are for a single anchor with no influence from nearby edges, concrete thickness, or additional anchors. For designs with the influence of nearby edges, concrete thickness, or additional anchors, use Hilti PROFIS Engineering Design software or perform anchor calculation using design equations from ACI 318 Ch. 17.

³ Compare concrete tabular values to the steel values in Table 6. The lesser of the values is to be used for the design.

⁴ Tabular values are for normal weight concrete only. For lightweight concrete, multiply design strength by λ_a as follows: For sand-lightweight, $\lambda_a = 0.68$. For all-lightweight, $\lambda_a = 0.60$.

⁵ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

² Tabular values are for a single anchor with no influence from nearby edges, concrete thickness, or additional anchors. For designs with the influence of nearby edges, concrete thickness, or additional anchors, use Hilti PROFIS Engineering Design software or perform anchor calculation using design equations from ACI 318 Ch. 17.

³ Compare concrete tabular values to the steel values in Table 6. The lesser of the values is to be used for the design.

⁴ Tabular values are for normal weight concrete only. For lightweight concrete, multiply design strength by λ_a as follows: For sand-lightweight, $\lambda_a = 0.68$. For all-lightweight, $\lambda_a = 0.60$.

⁵ Tabular values are for static loads only. For seismic loads, multiply design strength values in tension and shear by the following reduction factors: 1/4-in and 3/8-in diameter = 0.74

Table 4 — Hilti HDI-TZ design strength based on concrete failure modes in uncracked concrete per ACI 318 Ch. 17 1,2,3,4,5

Nominal anchor diameter in.	Effective	Tension (lesser of concret	e breakout / pullo	out) - ΦN _n	Shear (lesser of concrete breakout or pryout) - ΦV_n			
	embed. in. (mm)	f' c = 2500 psi (17.2 MPa) Ib (kN)	f' c = 3000 psi (20.7 MPa) Ib (kN)	f' c = 4000 psi (27.6 MPa) lb (kN)	f' c = 6000 psi (41.4 MPa) lb (kN)	f' c = 2500 psi (17.2 MPa) lb (kN)	f' c = 3000 psi (20.7 MPa) Ib (kN)	f' c = 4000 psi (27.6 MPa) Ib (kN)	f' c = 6000 psi (41.4 MPa) lb (kN)
2 /0	1.42	810	890	1,025	1,260	915	1,000	1,155	1,415
3/8	(36)	(3.6)	(4.0)	(4.6)	(5.6)	(4.1)	(4.4)	(5.1)	(6.3)
1/0	1.65	1,860	2,035	2,355	2,880	2,005	2,195	2,535	3,105
1/2	(42)	(8.3)	(9.1)	(10.5)	(12.8)	(8.9)	(9.8)	(11.3)	(13.8)
F /0	3	4,055	4,440	5,125	6,280	8,730	9,565	11,040	13,525
5/8	(76)	(18.0)	(19.8)	(22.8)	(27.9)	(38.8)	(42.5)	(49.1)	(60.2)

¹ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Table 5 — Hilti HDI-TZ design strength based on concrete failure modes in cracked concrete per ACI 318 Ch. 17 1,2,3,4,5

Nominal	Effective	Tension (lesser of concret	e breakout / pullo	out) - ΦN _n	Shear (lesser of concrete breakout or pryout) - ΦV_n			
anchor diameter in.	embed. in. (mm)	f' c = 2500 psi (17.2 MPa) Ib (kN)	f' = 3000 psi (20.7 MPa) lb (kN)	f' c = 4000 psi (27.6 MPa) lb (kN)	f' c = 6000 psi (41.4 MPa) lb (kN)	f' c = 2500 psi (17.2 MPa) lb (kN)	f' = 3000 psi (20.7 MPa) lb (kN)	f' c = 4000 psi (27.6 MPa) lb (kN)	f' c = 6000 psi (41.4 MPa) lb (kN)
0.70	1.42	710	780	900	1,100	800	875	1,010	1,240
3/8	(36)	(3.2)	(3.5)	(4.0)	(4.9)	(3.6)	(3.9)	(4.5)	(5.5)
1/0	1.65	1,655	1,810	2,090	2,560	1,780	1,950	2,250	2,760
1/2	(42)	(7.4)	(8.1)	(9.3)	(11.4)	(7.9)	(8.7)	(10.0)	(12.3)
F (0	3	3,545	3,885	4,485	5,495	7,640	8,365	9,660	11,835
5/8	(76)	(15.8)	(17.3)	(20.0)	(24.4)	(34.0)	(37.2)	(43.0)	(52.6)

¹ Linear interpolation between embedment depths and masonry compressive strengths is not permitted.

² Tabular values are for a single anchor with no influence from nearby edges, concrete thickness, or additional anchors. For designs with the influence of nearby edges, concrete thickness ness, or additional anchors, use Hilti PROFIS Engineering Design software or perform anchor calculation using design equations from ACI 318 Ch. 17.

³ Compare concrete tabular values to the steel values in Table 7. The lesser of the values is to be used for the design. 4 Tabular values are for normal weight concrete only. For lightweight concrete, multiply design strength by λ_a as follows: For sand-lightweight, $\lambda_a = 0.68$. For all-lightweight, $\lambda_a = 0.60$.

⁵ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

² Tabular values are for a single anchor with no influence from nearby edges, concrete thickness, or additional anchors. For designs with the influence of nearby edges, concrete thickness, or additional anchors, use Hilti PROFIS Engineering Design software or perform anchor calculation using design equations from ACI 318 Ch. 17.

³ Compare concrete tabular values to the steel values in Table 7. The lesser of the values is to be used for the design. 4 Tabular values are for normal weight concrete only. For lightweight concrete, multiply design strength by λ_a as follows:

For sand-lightweight, $\lambda_a = 0.68$. For all-lightweight, $\lambda_a = 0.60$.

⁵ Tabular values are for static loads only. For seismic loads, multiply design strength values in tension and shear by the following reduction factor: 0.75.

Table 6 — Hilti HDI-P TZ design strength based on steel failure per ACI 318 Ch. 17 1,2

Nominal anchor	Steel	Strength of HDI-P TZ A	nchor	Steel Strength of ASTM A36 Threaded Rod			
diameter in.	Tensile³ φN _{sa} lb (kN)	Shear ⁴ φV _{sa} Ib (kN)	Seismic Shear ⁵ φV _{sa,eq} lb (kN)	Tensile ³ φN _{sa,rod} lb (kN)	Shear ⁶ φV _{sa,rod} lb (kN)	Seismic Shear ⁷ $\phi V_{\text{sa,rod,eq}}$ Ib (kN)	
1/4	1,300	585	585	1,385	720	505	
1/4	(5.8)	(2.6)	(2.6)	(6.2)	(3.2)	(2.2)	
3/8	4,065	585	585	3,370	1,750	1,225	
3/6	(18.1)	(2.6)	(2.6)	(15.0)	(7.8)	(5.4)	
1/0	4,120	2,280	1,430	6,175	3,210	2,250	
1/2	(18.3)	(10.1)	(6.4)	(27.5)	(14.3)	(10.0)	

¹ Steel strength in tension and shear determined from the lesser of the HDI-P TZ or the inserted threaded rod.

Table 7 — Hilti HDI-TZ design strength based on steel failure per ACI 318 Ch. 17 1,2

Nominal anchor	Stee	Strength of HDI-TZ An	chor	Steel Strength of ASTM A36 Threaded Rod			
diameter in.	Tensile ³ φN _{sa} lb (kN)	Shear ⁴ φV _{sa} lb (kN)	Seismic Shear ⁵ φV _{sa,eq} lb (kN)	Tensile ³ φN _{sa,rod} lb (kN)	Shear ⁶ φV _{sa,rod} Ib (kN)	Seismic Shear ⁷ $\phi V_{sa,rod,eq}$ Ib (kN)	
2/9	3,750	3,750 2,080		3,370	1,750	1,225	
3/8	(16.7)	(9.3)	(6.3)	(15.0)	(7.8)	(5.4)	
1/0	3,890	2,155	1,560	6,175	3,210	2,250	
1/2	(17.3)	(9.6)	(6.9)	(27.5)	(14.3)	(10.0)	
F /0	7,965	4,410	3,160	9,835	5,110	3,580	
5/8	(35.4)	(19.6)	(14.1)	(43.7)	(22.7)	(15.9)	

¹ Steel strength in tension and shear determined from the lesser of the HDI-TZ or the inserted threaded rod.

 ¹ Steel strength in tension and shear determined from the resset of the HDI-P 12 of the inserted threaded rod.
 2 Hillt HDI-P TZ anchors are considered a brittle steel element. ASTM A36 threaded rod is considered a ductile steel element.
 3 Tensile φN_{sa} = φ A_{sa, V} f_{usa} as noted in ACI 318 Ch. 17.
 4 Shear values for HDI-P TZ determined by static shear tests with φV_{sa} ≤ φ 0.60 A_{se,V} f_{uta} as noted in ACI 318 Ch. 17.
 5 Seismic shear values for HDI-P TZ determined by seismic shear tests with φV_{sa,cd} ≤ φV_{sa} ≤ φ 0.60 A_{se,V} f_{uta} as noted in ACI 318 Ch. 17.
 6 Shear values for threaded rod determined by φV_{sa,cd} = φ 0.60 A_{se,V} f_{uta} as noted in ACI 318 Ch. 17.
 7 Seismic shear values for threaded rod determined by φV_{sa,cd} = φ 0.70 V_{sa,cd}.

 ¹ Steel strength in tension and shear determined from the lesser of the HDI-1Z or the inserted threaded rod.
 2 Hillt HDI-TZ anchors are considered a brittle steel element. ASTM A36 threaded rod is considered a ductile steel element.
 3 Tensile φN_{sa} = φ A_{sa,N} f_{uta} as noted in ACI 318 Ch. 17.
 4 Shear values for HDI-TZ determined by static shear tests with φV_{sa,eq} ≤ φ 0.60 A_{se,V} f_{uta} as noted in ACI 318 Ch. 17.
 5 Seismic shear values for HDI-TZ determined by seismic shear tests with φV_{sa,eq} ≤ φ 0.60 A_{se,V} f_{uta} as noted in ACI 318 Ch. 17.
 6 Shear values for threaded rod determined by φV_{sa,rod,eq} = φ 0.70 V_{sa,rod}.
 7 Seismic shear values for threaded rod determined by φV_{sa,rod,eq} = φ 0.70 V_{sa,rod}.

Table 8 — Hilti HDI-P TZ design strength in the soffit of uncracked lightweight concrete over metal deck per ACI 318 Ch. 17 1,2,3,4,5,6

		Minimum concrete	Ins	stallation per Figur	e 3	Installation per Figure 4			
anchor diameter emb	Effective embed.		Tensio	n - ФN _п	Shear - ΦV _n	Tension - ΦN _n		Shear - ΦV _n	
	in. (mm)	thickness ⁷ in. (mm)	f' = 3000 psi (20.7 MPa) lb (kN)	f' = 4000 psi (27.6 MPa) lb (kN)	f' _c ≥ 3000 psi (20.7 MPa) lb (kN)	f' = 3000 psi (20.7 MPa) lb (kN)	f' = 4000 psi (27.6 MPa) lb (kN)	f' c ≥ 3000 psi (20.7 MPa) Ib (kN)	
4/4	3/4	2	330	365	1,795	210	235	1,065	
1/4	(19)	(51)	(1.5)	(1.6)	(8.0)	(0.9)	(1.0)	(4.7)	
0.40	3/4	2	330	365	1,795	210	235	1,065	
3/8	(19)	(51)	(1.5)	(1.6)	(8.0)	(0.9)	(1.0)	(4.7)	
1/0	1	2	495	545	2,055	370	410	1,280	
1/2	(25)	(51)	(2.2)	(2.4)	(9.1)	(1.6)	(1.8)	(5.7)	

- 1 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- 2 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{et} (effective embedment).
 3 Tabular values are lightweight concrete and no additional reduction factor is needed.
- 4 No additional reduction factors for spacing or edge distance need to be applied.
- 5 Compare tabular values to the steel values in Table 6. The lesser of the values is to be used for the design.
- 6 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.
- 7 Minimum concrete thickness over the upper flute when anchor is installed in the lower flute. See Figure 3 and 4.

Table 9 — Hilti HDI-P TZ design strength in the soffit of cracked lightweight concrete over metal deck per ACI 318 Ch. 17 1,2,3,4,5,6,7

		Minimum concrete	Ins	stallation per Figur	e 3	Installation per Figure 4			
anchor emb	Effective embed.		Tensio	n - ФN _n	Shear - ΦV _n	Tensio	Tension - ΦN _n		
	in. (mm)	thickness ⁸ in. (mm)	f' _c = 3000 psi (20.7 MPa) lb (kN)	f' = 4000 psi (27.6 MPa) Ib (kN)	f' _c ≥ 3000 psi (20.7 MPa) lb (kN)	f' _c = 3000 psi (20.7 MPa) lb (kN)	f' _c = 4000 psi (27.6 MPa) lb (kN)	f' _c ≥ 3000 psi (20.7 MPa) lb (kN)	
4/4	3/4	2	160	175	1,795	100	115	1,065	
1/4	(19)	(51)	(0.7)	(0.8)	(8.0)	(0.4)	(0.5)	(4.7)	
2/9	3/4	2	160	175	1,795	100	115	1,065	
3/8	(19)	(51)	(0.7)	(0.8)	(8.0)	(0.4)	(0.5)	(4.7)	
1/0	1	2	375	415	2,055	280	310	1,280	
1/2	(25)	(51)	(1.7)	(1.8)	(9.1)	(1.2)	(1.4)	(5.7)	

- 1 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- 2 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{et} (effective embedment).
 3 Tabular values are lightweight concrete and no additional reduction factor is needed.
- 4 No additional reduction factors for spacing or edge distance need to be applied.
- 5 Compare tabular values to the steel values in Table 6. The lesser of the values is to be used for the design.
- 6 Tabular values are for static loads only. For seismic tension loads, multiply design strength values in tension by the following reduction factors: 1/4-in and 3/8-in diameter = 0.74
 - 1/2-in diameter = 0.68
- 7 Tabular values are for static loads only. For seismic shear loads for the 1/2-inch diameter anchor, multiply design strength values in shear by the following reduction factor: 0.63.
- 8 Minimum concrete thickness over the upper flute when anchor is installed in the lower flute. See Figure 3 and 4.

Table 10 — Hilti HDI-TZ design strength in the soffit of uncracked lightweight concrete over metal deck per ACI 318 Ch. 17 1,2,3,4,5,6

Nominal anchor		nbed. concrete thickness 7	Ins	stallation per Figure	e 3	Installation per Figure 4			
	Effective embed.		Tensio	n - ΦN _n	Shear - ΦV _n	Tension - ΦN _n		Shear - ΦV _n	
diameter in.	in. (mm)		f' = 3000 psi (20.7 MPa) lb (kN)	f' = 4000 psi (27.6 MPa) lb (kN)	f' c ≥ 3000 psi (20.7 MPa) lb (kN)	f' = 3000 psi (20.7 MPa) lb (kN)	f' = 4000 psi (27.6 MPa) lb (kN)	f' c ≥ 3000 psi (20.7 MPa) lb (kN)	
3/8	1.42	2	530	590	1,925	430	475	1,420	
3/6	(36)	(51)	(2.4)	(2.6)	(8.6)	(1.9)	(2.1)	(6.3)	
1/2	1.65	2	1,240	1,375	2,155	900	995	1,460	
1/2	(42)	(51)	(5.5)	(6.1)	(9.6)	(4.0)	(4.4)	(6.5)	

- 1 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- 2 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{at} (effective embedment).
- 3 Tabular values are lightweight concrete and no additional reduction factor is needed.
- 4 No additional reduction factors for spacing or edge distance need to be applied.
- $5\ \ \text{Compare tabular values to the steel values in Table 7.}\ \ \text{The lesser of the values is to be used for the design.}$
- 6 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete
- 7 Minimum concrete thickness over the upper flute when anchor is installed in the lower flute. See Figure 3 and 4.

Table 11 — Hilti HDI-TZ design strength in the soffit of cracked lightweight concrete over metal deck per ACI 318 Ch. 17 1,2,3,4,5,6,7

	Mini		Ins	stallation per Figure	e 3	Installation per Figure 4			
Nominal anchor	Effective embed.	concrete	Tension - ΦΝ _n		Shear - ΦV _n	Tension - ΦN _n		Shear - ΦV _n	
diameter in.	diameter in (mm)	thickness ⁸ in. (mm)	f' = 3000 psi (20.7 MPa) lb (kN)	f' = 4000 psi (27.6 MPa) lb (kN)	f' c ≥ 3000 psi (20.7 MPa) lb (kN)	f' = 3000 psi (20.7 MPa) lb (kN)	f' = 4000 psi (27.6 MPa) lb (kN)	f' c ≥ 3000 psi (20.7 MPa) lb (kN)	
3/8	1.42	2	465	515	1,925	375	415	1,420	
3/6	(36)	(51)	(2.1)	(2.3)	(8.6)	(1.7)	(1.8)	(6.3)	
1/0	1.65	2	1,100	1,220	2,155	805	890	1,460	
1/2	(42)	(51)	(4.9)	(5.4)	(9.6)	(3.6)	(4.0)	(6.5)	

- 1 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).
- 3 Tabular values are lightweight concrete and no additional reduction factor is needed.
- 4 No additional reduction factors for spacing or edge distance need to be applied.
 5 Compare tabular values to the steel values in Table 7. The lesser of the values is to be used for the design.
- 6 Tabular values are for static loads only. For seismic tension loads, multiply design strength values in tension by the following reduction factor: 0.75.
- Tabular values are for static loads only. For seismic shear loads, multiply design strength values in shear by the following reduction factors: 3/8-in diameter = 0.68
- 1/2-in diameter = 0.72
- 8 Minimum concrete thickness over the upper flute when anchor is installed in the lower flute. See Figure 3 and 4.

Figure 3 — Installation of Hilti HDI-P TZ and HDI-TZ in the soffit of concrete over metal deck floor and roof assemblies - W deck

Figure 4 — Installation of Hilti HDI-P TZ and HDI-TZ in the soffit of concrete over metal deck floor and roof assemblies - B deck

Table 12 — Hilti HDI-TZ setting information for installation on the top of concrete-filled profile steel deck assemblies according to Figure 5 1,2,3

Catting Information	Cumple of	Linita	Nominal	Anchor Size / Internal Thread	d Dia. (in)
Setting Information	Symbol	Units	3/8	1/2	5/8
Effective Embedment Death	h	in.	1.42	1.65	3
Effective Embedment Depth	h _{ef}	(mm)	(36)	(42)	(76)
Nominal Embedment Depth	h	in.	1-9/16	2	3-1/4
Nominal Embedment Depth	h _{nom}	(mm)	(40)	(51)	(83)
Minimum Hala Danth	h	in.	1-9/16	2	3-1/4
Minimum Hole Depth	h _o	(mm)	(40)	(51)	(83)
Minimum Concrete Thickness ⁴	-	in.	2-1/2	2-1/2	3-1/4
Minimum Concrete Thickness	h _{min,deck}	(mm)	(64)	(64)	(83)
Critical Edge Distance		in.	5-1/2	6-1/2	16
Critical Edge Distance	C _{ac,deck,top}	(mm)	(140)	(165)	(406)
Minimum Edge Dietemes		in.	2	2	2
Minimum Edge Distance	C _{min,deck,top}	(mm)	(51)	(51)	(51)
Minimum Charles		in.	4	4	4
Minimum Spacing	S _{min,deck,top}	(mm)	(102)	(102)	(102)

¹ Installations must comply with Figure 5 of this report.

Figure 5 — Installation of Hilti HDI-P TZ and HDI-TZ in the top of concrete filled profile steel deck assemblies

1 1-1/2-in B-deck as a minimum profile size. Other deck profiles meeting the B-deck minimum dimensions are also permitted.

² Design capacity shall be based on calculations according to values in Tables 4 and 5 of this report.

³ Applicable for h_{min,deck} < h_{min,Table 1}. For h_{min,deck} > h_{min,Table 1}, use setting information in Table 1 of this report. 4 Minimum concrete thickness refers to concrete thickness above the upper flute. See Figure 5.

DESIGN DATA IN CONCRETE PER CSA A23.3

CSA A23.3 Annex D Design

Limit State Design of anchors is described in the provisions of CSA A23.3 Annex D for post-installed anchors tested and assessed in accordance with ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors. Tables 19 and 20 in this section contains the Limit State Design tables that are based on the published loads in ICC Evaluation Services ESR-4236 and converted for use with CSA A23.3 Annex D. Tables 13 to 18 and 21 to 24 below are Hilti Simplified Design Tables which are prefactored resistance tables based on the design parameters and variables in Tables 19 and 20. All the figures in the previous ACI 318 Chapter 17 design section are applicable to Limit State Design and the tables will reference these figures. For a detailed explanation of the tables developed in accordance with CSA A23.3 Annex D, refer to Section 3.1.8 of Hilti's North American Anchor Fastening Technical Guide, Edition 22. Technical assistance is available by contacting Hilti Canada at (800) 363-4458 or at www.hilti.ca.

Table 13 — Hilti HDI-P TZ factored resistance based on concrete failure modes in uncracked concrete per CSA A23.3 Annex D 1,2,3,4,5

Nominal	Effective	Tension	(lesser of concre	te breakout / pull	lout) - N _r	Shear (lesser of concrete breakout or pryout) - V _r			
anchor diameter in.	embed. in. (mm)	f'c = 20 MPa (2,900 psi) lb (kN)	f' _c = 25 MPa (3,625 psi) lb (kN)	f'c = 30 MPa (4,350 psi) lb (kN)	f' c = 40 MPa (5,800 psi) Ib (kN)	f' c = 20 MPa (2,900 psi) Ib (kN)	f' _c = 25 MPa (3,625 psi) lb (kN)	f' c = 30 MPa (4,350 psi) lb (kN)"	f' = 40 MPa (5,800 psi) lb (kN)
1/4	3/4	325	365	400	460	380	425	465	540
1/4	(19)	(1.5)	(1.6)	(1.8)	(2.1)	(1.7)	(1.9)	(2.1)	(2.4)
2 /0	3/4	325	365	400	460	380	425	465	540
3/8	(19)	(1.5)	(1.6)	(1.8)	(2.1)	(1.7)	(1.9)	(2.1)	(2.4)
1/0	1	500	560	615	710	585	655	715	830
1/2	(25)	(2.2)	(2.5)	(2.7)	(3.2)	(2.6)	(2.9)	(3.2)	(3.7)

¹ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Table 14 — Hilti HDI-P TZ factored resistance based on concrete failure modes in cracked concrete per CSA A23.3 Annex D 1,2,3,4,5

Nominal	Effective	Tension	(lesser of concre	te breakout / pull	out) - N _r	Shear (lesser of concrete breakout or pryout) - V _r			
anchor diameter in.	embed. in. (mm)	f' c = 20 MPa (2,900 psi) lb (kN)	f'c = 25 MPa (3,625 psi) lb (kN)	f' c = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f'c = 20 MPa (2,900 psi) lb (kN)	f' c = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)"	f' c = 40 MPa (5,800 psi) lb (kN)
4 /4	3/4	195	210	225	245	270	300	330	380
1/4	(19)	(0.9)	(0.9)	(1.0)	(1.1)	(1.2)	(1.3)	(1.5)	(1.7)
0./0	3/4	195	210	225	245	270	300	330	380
3/8	(19)	(0.9)	(0.9)	(1.0)	(1.1)	(1.2)	(1.3)	(1.5)	(1.7)
1/0	1	375	405	430	475	515	575	630	730
1/2	(25)	(1.7)	(1.8)	(1.9)	(2.1)	(2.3)	(2.6)	(2.8)	(3.2)

¹ Linear interpolation between embedment depths and masonry compressive strengths is not permitted.

1/2-in diameter = 0.68

Tabular values are for a single anchor with no influence from nearby edges, concrete thickness, or additional anchors. For designs with the influence of nearby edges, concrete thickness, or additional anchors, use Hilti PROFIS Engineering Design software or perform anchor calculation using design equations from CSA A23.3 Annex D.
 Compare concrete tabular values to the steel values in Table 17. The lesser of the values is to be used for the design.

⁴ Tabular values are for normal weight concrete only. For lightweight concrete, multiply design strength by λ₂ as follows: For sand-lightweight, λ_a = 0.68. For all-lightweight, λ_a = 0.60. 5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

 ² Tabular values are for a single anchor with no influence from nearby edges, concrete thickness, or additional anchors. For designs with the influence of nearby edges, concrete thickness, or additional anchors, use Hilti PROFIS Engineering Design software or perform anchor calculation using design equations from CSA A23.3 Annex D.
 3 Compare concrete tabular values to the steel values in Table 17. The lesser of the values is to be used for the design.

⁴ Tabular values are for normal weight concrete only. For lightweight concrete, multiply design strength by λ₂ as follows: For sand-lightweight, $\lambda_a = 0.68$.

For all-lightweight, $\lambda_a = 0.60$.

5 Tabular values are for static loads only. For seismic loads, multiply design strength values in tension and shear by the following reduction factors: 1/4-in and 3/8-in diameter = 0.74

Table 15 — Hilti HDI-TZ factored resistance based on concrete failure modes in uncracked concrete per CSA A23.3 Annex D 1,2,3,4,5

Nominal	Effective	Tension	(lesser of concre	te breakout / pull	out) - N _r	Shear (lesser of concrete breakout or pryout) - V _r			
anchor diameter in.	embed. in. (mm)	f'c = 20 MPa (2,900 psi) Ib (kN)	f' _c = 25 MPa (3,625 psi) lb (kN)	f' c = 30 MPa (4,350 psi) lb (kN)	f' c = 40 MPa (5,800 psi) lb (kN)	f' c = 20 MPa (2,900 psi) lb (kN)	f'c = 25 MPa (3,625 psi) lb (kN)	f' c = 30 MPa (4,350 psi) lb (kN)"	f' = 40 MPa (5,800 psi) lb (kN)
2/0	1.42	850	950	1,040	1,200	990	1,110	1,215	1,400
3/8	(36)	(3.8)	(4.2)	(4.6)	(5.3)	(4.4)	(4.9)	(5.4)	(6.2)
1/0	1.65	2,005	2,240	2,455	2,835	2,005	2,240	2,455	2,835
1/2	(42)	(8.9)	(10.0)	(10.9)	(12.6)	(8.9)	(10.0)	(10.9)	(12.6)
F /0	3	4,345	4,860	5,325	6,145	8,695	9,720	10,650	12,295
5/8	(76)	(19.3)	(21.6)	(23.7)	(27.3)	(38.7)	(43.2)	(47.4)	(54.7)

¹ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Table 16 — Hilti HDI-TZ factored resistance based on concrete failure modes in cracked concrete per CSA A23.3 Annex D 1,2,3,4,5

Nominal	Effective	Tension	(lesser of concre	te breakout / pull	out) - N _r	Shear (lesser of concrete breakout or pryout) - V _r			
anchor diameter in.	embed. in. (mm)	f' c = 20 MPa (2,900 psi) Ib (kN)	f'c = 25 MPa (3,625 psi) lb (kN)	f' c = 30 MPa (4,350 psi) lb (kN)	f' c = 40 MPa (5,800 psi) lb (kN)	f' c = 20 MPa (2,900 psi) lb (kN)	f' c = 25 MPa (3,625 psi) lb (kN)	f' c = 30 MPa (4,350 psi) lb (kN)"	f' c = 40 MPa (5,800 psi) lb (kN)
0.40	1.42	745	835	915	1,055	870	975	1,070	1,235
3/8	(36)	(3.3)	(3.7)	(4.1)	(4.7)	(3.9)	(4.3)	(4.8)	(5.5)
1/0	1.65	1,775	1,980	2,170	2,505	1,775	1,980	2,170	2,505
1/2	(42)	(7.9)	(8.8)	(9.7)	(11.2)	(7.9)	(8.8)	(9.7)	(11.1)
F (0	3	3,825	4,275	4,685	5,410	7,650	8,555	9,370	10,820
5/8	(76)	(17.0)	(19.0)	(20.8)	(24.1)	(34.0)	(38.1)	(41.7)	(48.1)

¹ Linear interpolation between embedment depths and masonry compressive strengths is not permitted.

² Tabular values are for a single anchor with no influence from nearby edges, concrete thickness, or additional anchors. For designs with the influence of nearby edges, concrete thickness, or additional anchors, use Hilti PROFIS Engineering Design software or perform anchor calculation using design equations from CSA A23.3 Annex D.

 ³ Compare concrete tabular values to the steel values in Table 18. The lesser of the values is to be used for the design.
 4 Tabular values are for normal weight concrete only. For lightweight concrete, multiply design strength by λ_a as follows:

For sand-lightweight, $\lambda_a = 0.68$. For all-lightweight, $\lambda_a = 0.60$.

⁵ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

² Tabular values are for a single anchor with no influence from nearby edges, concrete thickness, or additional anchors. For designs with the influence of nearby edges, concrete thickness, or additional anchors, use Hilti PROFIS Engineering Design software or perform anchor calculation using design equations from CSA A23.3 Annex D. 3 Compare concrete tabular values to the steel values in Table 18. The lesser of the values is to be used for the design.

⁴ Tabular values are for normal weight concrete only. For lightweight concrete, multiply design strength by λ_n as follows:

For sand-lightweight, $\lambda_a = 0.68$. For all-lightweight, $\lambda_a = 0.60$.

⁵ Tabular values are for static loads only. For seismic loads, multiply design strength values in tension and shear by the following reduction factor: 0.75.

Table 17 — Hilti HDI-P TZ factored resistance based on steel failure per CSA A23.3 Annex D 1.2

Nominal anchor	Steel	Strength of HDI-P TZ A	nchor	Steel Strength of ASTM A36 Threaded Rod			
diameter in.	Tensile³ φN _{sar} lb (kN)	Shear ⁴ φV _{sar} lb (kN)	Seismic Shear ⁵ φV _{sar,eq} lb (kN)	Tensile ³ φN _{sar,rod} lb (kN)	Shear ⁶ φV _{sar,rod} lb (kN)	Seismic Shear ⁷ φV _{sar,rod,eq} Ib (kN)	
1/4	1,190	540	540	1,255	705	495	
1/4	(5.3)	(2.4)	(2.4)	(5.6)	(3.1)	(2.2)	
3/8	3,720	540	540	3,055	1,720	1,200	
3/6	(16.5)	(2.4)	(2.4)	(13.6)	(7.7)	(5.3)	
1/0	3,770	2,100	1,320	5,595	3,150	2,205	
1/2	(16.8)	(9.3)	(5.9)	(24.9)	(14.0)	(9.8)	

¹ Steel strength in tension and shear determined from the lesser of the HDI-P TZ or the inserted threaded rod.

Table 18 — Hilti HDI-TZ factored resistance based on steel failure per CSA A23.3 Annex D 1,2

Nominal anchor	Stee	l Strength of HDI-TZ An	chor	Steel Strength of ASTM A36 Threaded Rod			
diameter in.	Tensile ³ φN _{sar} lb (kN)	Shear ⁴ φV _{sar} lb (kN)	Seismic Shear ⁵ φV _{sar,eq} lb (kN)	Tensile ³ φN _{sar,rod} lb (kN)	Shear ⁶ φV _{sar,rod} lb (kN)	Seismic Shear ⁷ φV _{sar,rod,eq} lb (kN)	
2/9	3,435	1,915	1,300	3,055	1,720	1,200	
3/8	(15.3)	(8.5)	(5.8)	(13.6)	(7.7)	(5.3)	
1/0	3,560	1,985	1,435	5,595	3,150	2,205	
1/2	(15.8)	(8.8)	(6.4)	(24.9)	(14.0)	(9.8)	
F /0	7,290	4,060	2,910	8,915	5,015	3,510	
5/8	(32.4)	(18.1)	(12.9)	(39.7)	(22.3)	(15.6)	

¹ Steel strength in tension and shear determined from the lesser of the HDI-TZ or the inserted threaded rod.

¹ Steel strength it terision and shear determined from the tesser of the HDI-P 12 of the inserted threaded rod.

2 Hillt HDI-P TZ anchors are considered a brittle steel element. ASTM A36 threaded rod is considered a ductile steel element.

3 Tensile N_{sar} = φ_s Λ_{sa,N futs} R as noted in CSA A23.3 Annex D.

4 Shear values for HDI-P TZ determined by static shear tests with V_{sar} ≤ φ_s 0.60 A_{se,V} f_{uts} R as noted in CSA A23.3 Annex D.

5 Seismic shear values for HDI-P TZ determined by seismic shear tests with V_{sar,eq} ≤ V_{sar} ≤ φ_s 0.60 A_{se,V} f_{uts} R as noted in CSA A23.3 Annex D.

6 Shear values for threaded rod determined by V_{sar,rod,eq} = 0.60 A_{se,V} f_{uts} R as noted in CSA A23.3 Annex D.

7 Seismic shear values for threaded rod determined by V_{sar,rod,eq} = 0.70 V_{sar,rod}.

 ¹ Steel strength in tension and shear determined from the lesser of the HDI-12 of the inserted threaded rod.
 2 Hillt HDI-TZ anchors are considered a brittle steel element. ASTM A36 threaded rod is considered a ductile steel element.
 3 Tensile N_{sax} = φ_s A_{sa,N} f_{uta} R as noted in CSA A23.3 Annex D.
 4 Shear values for HDI-TZ determined by static shear tests with V_{sax} ≤ φ_s 0.60 A_{se,V} f_{uta} R as noted in CSA A23.3 Annex D.
 5 Seismic shear values for HDI-TZ determined by seismic shear tests with V_{sax,eq} ≤ V_{sax} ≤ φ_s 0.60 A_{se,V} f_{uta} R as noted in CSA A23.3 Annex D.
 6 Shear values for threaded rod determined by V_{sax,rod,eq} = φ_s 0.60 A_{se,V} f_{uta} R as noted in CSA A23.3 Annex D.
 7 Seismic shear values for threaded rod determined by V_{sax,rod,eq} = 0.70 V_{sax,rod}.

Table 19 — HDI-P TZ and HDI-TZ design information in accordance with CSA A23.3 1

			Nomina	Anchor Size /	Internal Threa	d Dia. (in)	
Symbol	Units		HDI-P TZ			HDI-TZ	
		1/4	3/8	1/2	3/8	1/2	5/8
al	in.	0.561	0.561	0.625	0.561	0.625	0.844
O _a	(mm)	(14.2)	(14.2)	(15.9)	(14.2)	(15.9)	(21.4)
h	in.	3/4	3/4	1	1.42	1.65	3
l ef	(mm)	(19)	(19)	(25)	(36)	(42)	(76)
Tens	sion Failure Mo	odes — Steel	and Concrete	1	1	1	1
Фѕ	-	0.85	0.85	0.85	0.85	0.85	0.85
$R_{s,N}$	-	0.70	0.70	0.70	0.70	0.70	0.70
f,,,	psi	70,400	70,400	70,400	79,600	70,400	58,000
ya	 ` ' ' ' '	` ′		<u> </u>			(400)
f _{uta}			1			-	72,500
	 	` ′	` ′	· · · ·	<u> </u>	· · ·	(500) 0.169
A _{se,N}							(109.0
	+ ` ′	` ′		 			12,25
N_{sa}					1		(54.5
Φ		` ′	· · · ·	` ′	<u> </u>	<u> </u>	0.65
-	-			1		1	1
R _{c,N}	-	0.60	0.60	0.60	0.60	1.00	1.00
_	in-lb	24	24	24	24	27	24
k _{c,uncr}	(SI)	(10.0)	(10.0)	(10.0)	(10.0)	(11.3)	(10.0
	in-lb	17	17	21	21	24	21
K _{c,cr}	(SI)	(7.1)	(7.1)	(8.8)	(8.8)	(10.0)	(8.8)
$\Psi_{c,N}$	-	1.0	1.0	1.0	1.0	1.0	1.0
	in.	6.5	6.5	4.0	5.5	6.5	12.0
C _{ac}	(mm)	(165)	(165)	(102)	(140)	(165)	(305)
N _{pr,uner}	lb (kN)	N/A	N/A	N/A	N/A	N/A	N/A
	lb	495	495	960			
N _{pr,cr}	(kN)	(2.2)	(2.2)	(4.3)	N/A	N/A	N/A
N	lb	490	490	865	NI /A	NI /A	N1/A
IN pr,eq	(kN)	(2.2)	(2.2)	(3.8)	IN/A	IN/A	N/A
Sh	ear Failure Mo	des — Steel a	nd Concrete				
$R_{s,V}$	-	0.65	0.65	0.65	0.65	0.65	0.65
V	lb	975	975	3,800	3,465	3,590	7,350
▼ sa	(kN)	(4.3)	(4.3)	(16.9)	(15.4)	(16.0)	(32.7
V _{sa en}	lb (LN)	975	975	2,385	2,355	2,600	5,265
	(KN)					` '	(23.4
R _{c,V}	-				0.70	1.00	1.00
I _e	in. (mm)	3/4 (19.1)	3/4	(25.4)	1.42 (36.1)	1.65 (41.9)	3 (76.2
k _{cp}	()	1.0	()	(=5.1)	(55.1)	()	(10.2
	d _a h _{ef} Tens φ _s R _{s,N} f _{ya} f _{uta} A _{se,N} N _{sa} φ _c - R _{c,N} k _{c,uncr} k _{c,cr} Ψ _{c,N} c _{ac} N _{pr,uncr} N _{pr,cr} N _{pr,cr} N _{pr,cq} She R _{s,V} V _{sa} V _{sa} q _c	da in. (mm) in. (mm²) in² (n/mm²) in² (n/mm²) in² (mm²) in² (mm²) in² (mm²) in² (mm²) in² (mm²) in² (kN) Φ _c	1/4	Symbol Units	Symbol Units	Symbol Units HDI-PTZ 1/4 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 1/8	1/4 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 1/2 3/8 3/8 3/2 3/8 3/2 3/8 3/2 3/8 3/2

¹ Design information is taken from ICC-ES ESR-4236, dated March 2024, Table 2, and converted for use with CSA A23.3 Annex D.

 ¹ Design information is taken from ICC-ES ESH-4236, dated March 2024, lable 2, and converted for use with CSA A23.3 Annex D.
 2 The HDI-P TZ and HDI-TZ are considered brittle steel elements as defined by CSA A23.3 Annex D Section D.2.
 3 All values of R are applicable with the load combinations of CSA A23.3 Chapter 8. For concrete failure modes, no increase for Condition A is permitted.
 4 N_{sar} = N_{sa} φ_s R_{s,N} where N_{sa} tabular value above is precalculated from A_{so,N} f_{uta}.
 5 For all design cases, ψ_{c,N} = 1.0. The appropriate effectiveness factor for cracked concrete (k_{c,m}) or uncracked concrete (k_{c,m}) must be used.
 6 For all design cases, ψ_{c,P} = 1.0. Tabular value for pullout resistance is for a concrete compressive strength of 20 MPa (2,900 psi). Pullout resistance for concrete compressive strength greater than 20 MPa (2,900 psi) may be increased by multiplying the tabular pullout resistance by (f'_c/20)^{0.35} for MPa or (f'_c/2,900)^{0.35} for psi. NA (not applicable) denotes that pullout resistance does not need to be considered for design.

⁷ Shear and seismic shear tests are all performed in cracked concrete member according to ICC-ES AC193 section 9.4 and 9.6 respectively. Value of V_{sal,eq} < 0.6 A_{se,V} f_{uta} for all cases. Multiply $V_{_{\text{sa}}}$ tabular value above by $\varphi_{_{\text{s}}} \overset{\cdot}{R}_{_{\text{s,V}}}$ to get $V_{_{\text{sar}}}$ and $V_{_{\text{sar,eq}}}$

Table 20 — Steel Design Information for Inserted Threaded Rod Used with HDI-P TZ and HDI-TZ Anchors, in Accordance with CSA A23.31

					Jominal Anchor Size /	- Internal Thread Dia. (ii	n)
Design	Information	Symbol	Units	1/4	3/8	1/2	5/8
			in.	0.250	0.375	0.500	0.625
Nomina	al Rod Diameter	d_{rod}	(mm)	(6.4)	(9.5)	(12.7)	(15.9)
Steel Embedment Material Resistance Factor for Reinforcement		f _s	-	0.85	0.85	0.85	0.85
Min. Sr	pecified Ult. Strength, ASTM A36		psi	58,000	58,000	58,000	58,000
	laterial ,	$f_{_{\mathrm{uta}}}$	(MPa)	(400)	(400)	(400)	(400)
D-4 F#		$A_{_{se,rod}}$	in.²	0.0318	0.0775	0.1419	0.2260
Roa Et	Rod Effective Cross-sectional Area		(mm²)	(21)	(50)	(92)	(146)
	Resistance Modification Factor for Tension, Steel Failure Modes ²	$R_{s,N}$	-	0.80	0.80	0.80	0.80
	Factored Steel Resistance in	N	lb	1,845	4,495	8,230	13,110
ਰ	Tension ³	$N_{\rm sa,rod}$	(kN)	(8.2)	(20.0)	(36.6)	(58.3)
ateri	Factored Steel Resistance in	N	lb	1,845	4,495	8,230	13,110
ž	Tension, Seismic ³	$N_{_{\text{sa,rod,eq}}}$	(kN)	(8.2)	(20.0)	(36.6)	(58.3)
Steel Material	Resistance Modification Factor for Shear, Steel Failure Modes ²	$R_{s,v}$	-	0.75	0.75	0.75	0.75
Factored Steel Resistance in		V	lb	1,105	2,695	4,940	7,865
	Shear ⁴	$V_{sa,rod}$	(kN)	(4.9)	(12.0)	(22.0)	(35.0)
	Factored Steel Resistance in		lb	775	1,885	3,460	5,505
	Shear, Seismic ⁴	V _{sa,rod,eq}	(kN)	(3.4)	(8.4)	(15.4)	(24.5)

¹ Values provided for steel element material types, or equivalent, based on minimum specified strengths and calculated in accordance with CSA A23.3 Eq. D.2 and Eq. D.31. V_{sa,rod,eq} must be taken as 0.7V_{sa,rod}.

2 All values of R are applicable with the load combinations of CSA A23.3 Chapter 8. Values correspond to a ductile steel element.

3 N_{sar,rod(eq)} = N_{sa,rod(eq)} φ_s R_{s,N} where N_{sa,rod(eq)} tabular value above is precalculated from A_{se,rod} f_{uta}. N_{sar} shall be the lower of N_{sar,rod}. N_{sar,HDI-TZ}, or N_{sar,HDI-TZ}, or N_{sar,HDI-TZ}, as applicable, for static steel strength in tension; for seismic loads, N_{sar,eq} shall be the lower of N_{sar,rod,eq}, N_{sar,eq,HDI-TZ}, or N_{sar,ed,HDI-TZ}, as applicable.

4 V_{sar,rod(eq)} = V_{sa,rod(eq)} φ_s R_{s,V} where V_{sar,rod} tabular value above is precalculated from 0.60 A_{sar,rod,ql}, and V_{sar,rod,eql}, v_{sar,ed,HDI-TZ}, or V_{sar,ed,HDI-TZ}, as applicable, for static steel strength in shear; for seismic loads, V_{sar,eq} shall be the lower of V_{sar,rod,eql}, v_{sar,ed,HDI-TZ}, or V_{sar,ed,HDI-TZ}, as applicable.

Table 21 — Hilti HDI-P TZ design strength in the soffit of uncracked lightweight concrete over metal deck per CSA A23.3 Annex D 1,2,3,4,5,6

			Ins	stallation per Figure	e 3	Installation per Figure 4			
Nominal anchor	Effective embed.	Minimum concrete thickness 7	Tension - ΦN,		Shear - ΦV _r	Tension - ΦN _r		Shear - ΦV _r	
diameter in.	diameter in (mm)		f' = 20 MPa (2,900 psi) Ib (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' c ≥ 20 MPa (2,900 psi) Ib (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) Ib (kN)	f' ≥ 20 MPa (2,900 psi) lb (kN)	
4.4	3/4	2	320	365	1,655	205	235	980	
1/4	(19)	(51)	(1.4)	(1.6)	(7.4)	(0.9)	(1.0)	(4.4)	
0.40	3/4	2	320	365	1,655	205	235	980	
3/8	(19)	(51)	(1.4)	(1.6)	(7.4)	(0.9)	(1.0)	(4.4)	
1.0	1	2	475	550	1,890	355	410	1,175	
1/2	(25)	(51)	(2.1)	(2.4)	(8.4)	(1.6)	(1.8)	(5.2)	

- 1 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- 2 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).

- 3 Tabular values are lightweight concrete, and no additional reduction factor is needed.
 4 No additional reduction factors for spacing or edge distance need to be applied.
 5 Compare tabular values to the steel values in Table 17. The lesser of the values is to be used for the design.
- 6 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.
- 7 Minimum concrete thickness over the upper flute when anchor is installed in the lower flute. See Figure 3 and 4.

Table 22 — Hilti HDI-P TZ design strength in the soffit of cracked lightweight concrete over metal deck per CSA A23.3 Annex D 1,2,3,4,5,6,7

N	M	Minimum	Ins	stallation per Figure	e 3	Installation per Figure 4			
Nominal anchor	Effective embed.	concrete	Tension - ФN,		Shear - ΦV _r	Tension - ΦN _r		Shear - ΦV _r	
diameter in.	in. (mm)	thickness ⁸ in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) Ib (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) lb (kN)	
4 //4	3/4	2	155	180	2,545	100	115	980	
1/4	(19)	(51)	(0.7)	(0.8)	(11.3)	(0.4)	(0.5)	(4.4)	
0.70	3/4	2	155	180	2,545	100	115	980	
3/8	(19)	(51)	(0.7)	(0.8)	(11.3)	(0.4)	(0.5)	(4.4)	
1/0	1	2	360	415	2,910	270	310	1,175	
1/2	(25)	(51)	(1.6)	(1.8)	(12.9)	(1.2)	(1.4)	(5.2)	

- 1 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- 2 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).
- 3 Tabular values are lightweight concrete, and no additional reduction factor is needed.
- 4 No additional reduction factors for spacing or edge distance need to be applied.
- 5 Compare tabular values to the steel values in Table 17. The lesser of the values is to be used for the design.
 6 Tabular values are for static loads only. For seismic tension loads, multiply design strength values in tension by the following reduction factors:
- 1/4-in and 3/8-in diameter = 0.74
 - 1/2-in diameter = 0.68
- 7 Tabular values are for static loads only. For seismic shear loads for the 1/2-inch diameter anchor, multiply design strength values in shear by the following reduction factor: 0.63. 8 Minimum concrete thickness over the upper flute when anchor is installed in the lower flute. See Figure 3 and 4.

Table 23 — Hilti HDI-TZ design strength in the soffit of uncracked lightweight concrete over metal deck per CSA A23.3 Annex D 1,2,3,4,5,6

Nominal anchor diameter in.	Effective embed. in. (mm)	Minimum concrete thickness ⁷ in. (mm)	Installation per Figure 3			Installation per Figure 4		
			Tension - ФN,		Shear - ΦV _r	Tension - ΦN, Sh		Shear - ΦV _r
			f' = 20 MPa (2,900 psi) Ib (kN)	f' = 30 MPa (4,350 psi) Ib (kN)	f' c ≥ 20 MPa (2,900 psi) Ib (kN)	f' c = 20 MPa (2,900 psi) Ib (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) lb (kN)
3/8	1.42	2	515	590	1,775	410	475	1,310
	(36)	(51)	(2.3)	(2.6)	(7.9)	(1.8)	(2.1)	(5.8)
1/2	1.65	2	735	850	1,985	535	615	1,345
	(42)	(51)	(3.3)	(3.8)	(8.8)	(2.4)	(2.7)	(6.0)

¹ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Table 24 — Hilti HDI-TZ design strength in the soffit of cracked lightweight concrete over metal deck per CSA A23.3 Annex D 1,2,3,4,5,6,7

Nominal anchor diameter in.	Effective embed. in. (mm)	Minimum concrete thickness ⁸ in. (mm)	Installation per Figure 3			Installation per Figure 4		
			Tension - ΦΝ _r		Shear - ΦV _r	Tension - ΦN _r		Shear - ΦV _r
			f' = 20 MPa (2,900 psi) lb (kN)	f' = 30 MPa (4,350 psi) Ib (kN)	f' c ≥ 20 MPa (2,900 psi) lb (kN)	f' = 20 MPa (2,900 psi) Ib (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' ≥ 20 MPa (2,900 psi) lb (kN)
3/8	1.42	2	450	515	2,730	360	420	1,310
	(36)	(51)	(2.0)	(2.3)	(12.1)	(1.6)	(1.9)	(5.8)
1/2	1.65	2	655	755	3,050	475	550	1,345
	(42)	(51)	(2.9)	(3.4)	(13.6)	(2.1)	(2.4)	(6.0)

¹ Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

 ² Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).
 3 Tabular values are lightweight concrete, and no additional reduction factor is needed.

⁴ No additional reduction factors for spacing or edge distance need to be applied.

⁵ Compare tabular values to the steel values in Table 18. The lesser of the values is to be used for the design.

⁶ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

⁷ Minimum concrete thickness over the upper flute when anchor is installed in the lower flute. See Figure 3 and 4.

² Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{ef} (effective embedment).
3 Tabular values are lightweight concrete, and no additional reduction factor is needed.

⁴ No additional reduction factors for spacing or edge distance need to be applied.

⁵ Compare tabular values to the steel values in Table 18. The lesser of the values is to be used for the design.

⁶ Tabular values are for static loads only. For seismic tension loads, multiply design strength values in tension by the following reduction factor: 0.75.

⁷ Tabular values are for static loads only. For seismic shear loads, multiply design strength values in shear by the following reduction factors: 3/8-in diameter = 0.68

^{1/2-}in diameter = 0.72

⁸ Minimum concrete thickness over the upper flute when anchor is installed in the lower flute. See Figure 3 and 4.

INSTALLATION INSTRUCTIONS

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.hilti.com or www.hilti.ca. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

ORDERING INFORMATION

HDI-P TZ and HDI-TZ — Carbon Steel

Description	Anchor Thread Size	Anchor Diameter	Anchor Length	Qty / Box	Item number
HDI-P TZ 1/4"	1/4"	9/16"	3/4"	100	2351867
HDI-P TZ 3/8"	3/8"	9/16"	3/4"	100	2351768
HDI-P TZ 1/2"	1/2"	5/8"	1"	50	2351769
HDI-TZ 3/8"	3/8"	9/16"	1-9/16"	50	2351791
HDI-TZ 1/2"	1/2"	5/8"	2"	50	2351792
HDI-TZ 5/8"	5/8"	27/32"	3-1/4"	25	2351793

Setting Tools for HDI-P TZ and HDI-TZ

Anchor	Setting Tool Type	Legend	Item number
	Standard Hand Setting Tool	1)	2422172
	Grip Hand Setting Tool	2	2421859
HDI-P TZ 1/4"	2-in-1 Setting Tool	3	2417737
	2-in-1 Setting Tool Spare Drill Bit	4	2419224
	Stop Drill Bit	(5)	2419472
	Standard Hand Setting Tool	1	2422180
	Standard Notch Setting Tool	6	2204110
UDI D 77.0/0"	Grip Hand Setting Tool	2	2422170
HDI-P TZ 3/8"	2-in-1 Setting Tool	3	2204112
	2-in-1 Setting Tool Spare Drill Bit	4	2419471
	Stop Drill Bit	(5)	2419472
	Standard Hand Setting Tool	1	2034016
	Grip Hand Setting Tool	2	401552
HDI-P TZ 1/2"	2-in-1 Setting Tool	3	2112765
	2-in-1 Setting Tool Spare Drill Bit	4	2112771
	Stop Drill Bit	(5)	2417766
	Standard Hand Setting Tool	1	32979
	Grip Hand Setting Tool	2	243742
HDI-TZ 3/8"	2-in-1 Setting Tool	3	2417749
	2-in-1 Setting Tool Spare Drill Bit	4	2419225
	Stop Drill Bit	(5)	2419226
	Standard Hand Setting Tool	1	32980
	Grip Hand Setting Tool	2	243743
HDI-TZ 1/2"	2-in-1 Setting Tool	3	2112766
	2-in-1 Setting Tool Spare Drill Bit	4	2112772
	Stop Drill Bit	(5)	2313922
	Standard Hand Setting Tool	1	2422181
UDI 77 5 (0)	Grip Hand Setting Tool	2	2425171
HDI-TZ 5/8"	Stop Drill Bit	(5)	2418818
	TE Setting Tool	7	2417738

Open Clip Extraction Head for TE 4/6 DRS

Anchor	Setting Tool Type	Legend	Item number
HDI-P TZ (all sizes) HDI-TZ (3/8"-1/2")	Extraction head HKD/HDI TE DRS	8	2154076

