NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.

<table>
<thead>
<tr>
<th>No.</th>
<th>Unit Qty</th>
<th>Unit Description</th>
<th>Box Qty</th>
<th># Boxes Needed</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>BRACKET MQK-4&quot;/400-F</td>
<td>1</td>
<td>1</td>
<td>304117</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>ANGLE BRACE MQK 6X6-F</td>
<td>1</td>
<td>1</td>
<td>304129</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>CHANNEL CONNECTOR MQH-HDG PLUS</td>
<td>1</td>
<td>1</td>
<td>397779</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>CHANNEL END C3P MK REJ</td>
<td>1</td>
<td>1</td>
<td>244886</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>USE KB3 OR KB-12 AS APPROPRIATE</td>
<td>VARES</td>
<td>VARES</td>
<td>VARES</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>BASE PLATE MQF-F127-F</td>
<td>1</td>
<td>1</td>
<td>304201</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>CONNECTOR PIPE SHOE MIC-PG</td>
<td>1</td>
<td>1</td>
<td>304842</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>WING S/MT MQM-F3/8-F</td>
<td>1</td>
<td>1</td>
<td>304136</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>COUNTERSUNK BOLT 3/8 X 1</td>
<td>VARES</td>
<td>VARES</td>
<td>VARES</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>U-BOLT = PIPE Dia (HDG)</td>
<td>VARES</td>
<td>VARES</td>
<td>VARES</td>
</tr>
</tbody>
</table>
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI–PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PO SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O). LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PO SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15. THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER’S IFUs FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
**Maximum (L1 in.)**

<table>
<thead>
<tr>
<th>Unit Qty</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>2</td>
<td>AS REQ'D</td>
</tr>
<tr>
<td>3</td>
<td>EA</td>
</tr>
<tr>
<td>4</td>
<td>EA</td>
</tr>
<tr>
<td>5</td>
<td>EA</td>
</tr>
<tr>
<td>6</td>
<td>EA</td>
</tr>
<tr>
<td>7</td>
<td>EA</td>
</tr>
<tr>
<td>8</td>
<td>EA</td>
</tr>
<tr>
<td>9</td>
<td>EA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box Qty</th>
<th># Boxes Needed</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>267793</td>
</tr>
<tr>
<td>1</td>
<td>AS REQ'D</td>
<td>304798</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>304834</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>304842</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>432077</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>304828</td>
</tr>
<tr>
<td>Varies</td>
<td>Varies</td>
<td>Varies</td>
</tr>
<tr>
<td>Varies</td>
<td>Varies</td>
<td>Varies</td>
</tr>
<tr>
<td>Varies</td>
<td>Varies</td>
<td>SPECIAL</td>
</tr>
</tbody>
</table>

**Notes:**

1. **THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION.** THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. **ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED.** PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.


4. **REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.**

5. **FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.**
<table>
<thead>
<tr>
<th>L1 (in.)</th>
<th>MAXIMUM LOAD (lbs.)</th>
<th>ALLOWABLE VERTICAL LOAD (lbs.)</th>
<th>ALLOWABLE TRANSVERSE LOAD (lbs.)</th>
<th>ALLOWABLE LONGITUDINAL LOAD (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>1650</td>
<td>555</td>
<td>277.5</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1700</td>
<td>510</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1600</td>
<td>480</td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**
1. This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project-specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project-specific design criteria and requirements.
2. All loads assumed to act on the mic-pg slide support, no eccentric loads included. Pipe connection hardware must be checked separately.
3. Design assumptions: IBC 2012 Building Code; see table for design loads (static u,n.o) longitudinal loads are analyzed as earthquake loads and assume the u-bolt is loose fitting and the pipe rests on the mic-pg slide support with a friction value of 0.15. Therefore the actual pipe system weight = the tables longitudinal load + 0.15.
4. Refer to component manufacturer's IFU's for required installation information.
5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O,) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15. THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
TYPICAL DETAILS

PIPING
BRACED CANTILEVER (MQ)
STEEL

NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MQ-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MQ-PG SLIDE SUPPORT WITH A FRICITION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project-specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project-specific design criteria and requirements.

2. All loads assumed to act on the MIC-PG slide support, no eccentric loads included. Pipe connection hardware must be checked separately.

3. Design assumptions: IBC 2012 building code; see Table for design loads (static U,N,D), longitudinal loads are analyzed as earthquake loads and assume the U-bolt is loose fitting and the pipe rests on the MIC-PG slide support with a friction value of 0.15. Therefore, the actual pipe system weight = the table's longitudinal load + 0.15.

4. Refer to component manufacturer's IFUs for required installation information.

5. For applicable concrete or steel anchor designs, contact Hilti or the project site engineer of record.
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O), LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.,) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SPRIFF WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE Mc-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project specific design criteria and requirements.

2. All loads assumed to act on the MIC-PG slide support, no eccentric loads included. Pipe connection hardware must be checked separately.

3. Design assumptions: IBC 2012 building code; see table for design loads (static U,N,O) longitudinal loads are analyzed as earthquake loads and assume the U-bolt is loose fitting and the pipe rests on the MIC-PG slide support with a friction value of 0.15, therefore the actual pipe system weight = the table's longitudinal load + 0.15.

4. Refer to component manufacturer's IFU's for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE connection HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O,) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.
4. REFER TO COMPONENT MANUFACTURER'S IFUS FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine suitability for the actual, project specific design criteria and requirements.

2. All loads assumed to act on the mic-pg slide support, no eccentric loads included. Pipe connection hardware must be checked separately.

3. Design assumptions: IBC 2012 building code; see table for design loads (static U.N.O.) longitudinal loads are analyzed as earthquake loads and assume the u-bolt is loose fitting and the pipe rests on the mic-pg slide support with a friction value of 0.15, therefore the actual pipe system weight = the tables longitudinal load + 0.15.

4. Refer to component manufacturer’s IFU’s for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATLY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual project specific design criteria and requirements.

2. All loads assumed to act on the Mic-PG slide support, no eccentric loads included. Pipe connection hardware must be checked separately.

3. Design assumptions: IBC 2012 building code; see table for design loads (static U.N.O.) longitudinal loads are analyzed as earthquake loads and assume the U-bolt is loose fitting and the pipe rests on the Mic-PG slide support with a friction value of 0.15. Therefore, the actual pipe system weight = the table's longitudinal load + 0.15.

4. Refer to component manufacturer's IFU's for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
**NOTE(S):**

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
**TYPICAL DETAILS**

**SERVICE REQUEST DESCRIPTION**

**_VENDOR**

**REVIEWED BY:**

**DRAFTED BY:**

**DRAWN BY:**

**PROJECT NAME:**

**SERVICE REQUEST NUMBER:** TD-P-F56-C

**DRAWING NUMBER:** SHEET 01/1

---

**NOTE(S):**

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI–PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15. THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC AND LONGITUDINAL) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project-specific design criteria and requirements.

2. All loads assumed to act on the Mic-PG slide support, no eccentric loads included. Pipe connection hardware must be checked separately.

3. Design assumptions: IBC 2012 Building Code; see Table for Design Loads (Static U.N.C.). Longitudinal loads are analyzed as earthquake loads and assume the U-bolt is loose fitting and the pipe rests on the Mic-PG slide support with a friction value of 0.15. Therefore, the actual pipe system weight = the table longitudinal load x 0.15.

4. Refer to component manufacturer's IFUs for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O,) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICITION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS. LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15. THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT-SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

1. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

2. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15. THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT X THE TABLES LONGITUDINAL LOAD = 0.15.

3. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

4. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
TYPICAL DETAILS

PIPING GOALPOST (MQ) CONCRETE

NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE MQ-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MQ-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
**TYPICAL DETAILS**

**SERVICE REQUEST DESCRIPTION**

**PIPING**

**GOALPOST (MQ)**

**CONCRETE**

**NOTE(S):**

1. **THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.**

2. **ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.**

3. **DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.**

4. **REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.**

5. **FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.**
**ISOMETRIC**

**NOTE(S):**

1. **THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD-RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.**

2. **ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.**

3. **DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O,) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SPOTTED WITH A FRICTION VALUE OF 0.15. THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.**

4. **REFER TO COMPONENT MANUFACTURER’S IFUS FOR REQUIRED INSTALLATION INFORMATION.**

5. **FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.**
MAXIMUM H (in.) | ALLOWABLE VERTICAL LOAD (lbs.) | ALLOWABLE TRANSVERSE LOAD (lbs.) | ALLOWABLE LONGITUDINAL LOAD (lbs.)
---|---|---|---
48 | 2100 | 630 | 630
60 | 1750 | 525 | 525
72 | 1400 | 420 | 420

NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15. THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD * 0.15.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.

PIPING GOALPOST CONCRETE

ELEVATION R.C.L.

TD-P-GP04-C
1. This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project specific design criteria and requirements.

2. All loads assumed to act on the mic-pg slide support, no eccentric loads included. Pipe connection hardware must be checked separately.

3. Design assumptions: IBC 2012 building code; see table for design loads (static U.N.O.I.) longitudinal loads are analyzed as earthquake loads and assume the U-bolt is loose fitting and the pipe rests on the mic-pg slide support with a friction value of 0.15, therefore the actual pipe system weight = the tables longitudinal load + 0.15.

4. Refer to component manufacturer's IFU's for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES. AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
**ISOMETRIC**

**Beam Width Table**

<table>
<thead>
<tr>
<th>No.</th>
<th>Unit Qty</th>
<th>Unit Description</th>
<th>Box Qty</th>
<th># Boxes Needed</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>EA CONNECTOR MIC-S90-X STEEL (SEE TABLE)</td>
<td>2</td>
<td>1 VARES</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AS REC'D</td>
<td>EA GIRDERS MI-90-3M</td>
<td>1</td>
<td>1 AS REC'D</td>
<td>30-798</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>EA CONNECTOR U-BOLT MICUB90-M16</td>
<td>6</td>
<td>1 30-834</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>EA CONNECTOR PIPE SHOE MIPAPG</td>
<td>10</td>
<td>1 30-942</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>EA GIRDERS END CAP MA-E00</td>
<td>25</td>
<td>1 430777</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>EA BEAM CLAMP MI-S00C-M12</td>
<td>16</td>
<td>1 230509</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>EA CONNECTOR MIC-90-U</td>
<td>4</td>
<td>1 30-803</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>EA L-BOLT BASED IN PIPE DIAMETER-HDG</td>
<td>VARES</td>
<td>VARES</td>
<td>SPECIAL</td>
</tr>
</tbody>
</table>

**MAXIMUM H (ft.) | ALLOWABLE VERTICAL LOAD (lbs.) | ALLOWABLE TRANSVERSE LOAD (lbs.) | ALLOWABLE LONGITUDINAL LOAD (lbs.)**

| 48 | 1225 | 383 | 383 |
| 60 | 1025 | 565 | 303 |
| 72 | 850  | 255 | 255 |

**NOTE(S):**

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O,) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
TABLE 1: MAXIMUM H (in.), ALLOWABLE VERTICAL LOAD (lbs.), ALLOWABLE TRANSVERSE LOAD (lbs.), ALLOWABLE LONGITUDINAL LOAD (lbs.)

<table>
<thead>
<tr>
<th>MAXIMUM H (in.)</th>
<th>ALLOWABLE VERTICAL LOAD (lbs.)</th>
<th>ALLOWABLE TRANSVERSE LOAD (lbs.)</th>
<th>ALLOWABLE LONGITUDINAL LOAD (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>1400</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>60</td>
<td>1158</td>
<td>345</td>
<td>345</td>
</tr>
<tr>
<td>72</td>
<td>975</td>
<td>293</td>
<td>293</td>
</tr>
</tbody>
</table>

NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SPOTTIM WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
4. REFER TO COMPONENT MANUFACTURER'S 'IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O,) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SPONGE WITH A FRICTION VALUE OF 0.15. THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD X 0.15.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
**NOTE(S):**

1. This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project specific design criteria and requirements.

2. All loads assumed to act on the mic-pg slide support, no eccentric loads included. Pipe connection hardware must be checked separately.

3. Design assumptions: IBC 2012 building code; see table for design loads (static U,N,O,) longitudinal loads are analyzed as earthquake loads and assume the u-bolt is loose fitting and the pipe rests on the mic-pg slide support with a friction value of 0.15, therefore the actual pipe system weight = the tables longitudinal load * 0.15.

4. Refer to component manufacturer's IFU's for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE MIC-PC SLIDE SUPPORT, NO ECCENTRIC LOADS Included. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPERATLY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.), LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PC SLIDE SPURR WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.

No. Unit Qty Unit Description Box Qty #Boxes Needed Item No.
1 AS REQU EA STRUT HS-158-1210-HDG 10 1 AS REQU 407573
2 6 EA CHANNEL CONNECTOR MON-HDG PUS 10 1 387779
3 2 EA CONNECTOR PIPE SHOE MIC-PC 10 1 304842
4 2 EA CHANNEL END CAP VIEK RED 50 1 244883
5 1 EA BASE MQP-21-72-F 12 1 304185
6 1 EA 8-HOLE ANGLE MQP-8/90-F 10 1 304175
7 4 EA BASE PLATE MQP-7/22-F 20 1 304201
8 2 EA WING NUT MQM-3/8-F 25 1 304133
9 2 EA COUNTERSUNK BOLT 3/8 X 1 - SS VARIES VARIES SPECIAL
10 1 EA U-BOLT BASED ON PIPE DIAMETER - HDG VARIES VARIES VARIES

PROJECT NAME:
TYPICAL DETAILS

SERVICE REQUEST NUMBER
TD-P-TP61-S

DRAWING NUMBER SHEET: 01 1/1
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI–PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPERATLY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O, ) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project specific design criteria and requirements.

2. All loads assumed to act on the Mic-PG slide support, no eccentric loads included. Pipe connection hardware must be checked separately.

3. Design assumptions: IBC 2012 building code; see Table for design loads (static U.N.O.) longitudinal loads are analyzed as earthquake loads and assume the U-bolt is loose fitting and the pipe rests on the MIC-PG slide support with a friction value of 0.15, therefore the actual pipe system weight = the tables longitudinal load + 0.15.

4. Refer to component manufacturer's IFU's for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
MAXIMUM H (kN) | ALLOWABLE VERTICAL LOAD (lbs.) | ALLOWABLE TRANSVERSE LOAD (lbs.) | ALLOWABLE LONGITUDINAL LOAD (lbs.)
--- | --- | --- | ---
48 | 725 | 218 | 218
60 | 580 | 174 | 174
72 | 480 | 144 | 144

1/2 DIA. = 6" (TYP.)

(1) PIPE

120mm

NOTES:
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SPINNER WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATLY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SPERRT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project specific design criteria and requirements.

1. All loads assumed to act on the MIC-PG slide support, no eccentric loads included. Pipe connection hardware must be checked separately.

2. Design assumptions: IBC 2012 building code; see table for design loads (static U,N,O,) longitudinal loads are analyzed as earthquake loads and assume the U-bolt is loose fitting and the pipe rests on the MIC-PG slide support with a friction value of 0.15. Therefore the actual pipe system weight = the tables longitudinal load + 0.15.

3. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.

NOTE(S):
**CONCRETE SLAB NOT SHOWN FOR CLARITY**

**U-BOLT LOOSE FIT**

**ISOMETRIC N.T.A.**

**ELEVATION N.T.S.**

**NOTE(S):**

1. **THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION.** THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. **ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.**

3. **DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15. THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD X 0.15.**

4. **REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.**

5. **FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.**

**TYPICAL DETAILS**

**PIPING TRAPEZE CONCRETE**

<table>
<thead>
<tr>
<th>MAXIMUM</th>
<th>ALLOWABLE</th>
<th>ALLOWABLE</th>
<th>ALLOWABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (in)</td>
<td>VERTICAL</td>
<td>TRANSVERSE</td>
<td>LONGITUDINAL</td>
</tr>
<tr>
<td>48</td>
<td>1400</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>60</td>
<td>1400</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>72</td>
<td>1290</td>
<td>389</td>
<td>389</td>
</tr>
</tbody>
</table>

**ELEVATION**

**NOTE(S):**

1. **THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION.** THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. **ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.**

3. **DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15. THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD X 0.15.**

4. **REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.**

5. **FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.**
<table>
<thead>
<tr>
<th>MAXIMUM H (IN.)</th>
<th>ALLOWABLE VERTICAL LOAD (LBS.)</th>
<th>ALLOWABLE TRANSVERSE LOAD (LBS.)</th>
<th>ALLOWABLE LONGITUDINAL LOAD (LBS.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>1800</td>
<td>540</td>
<td>540</td>
</tr>
<tr>
<td>60</td>
<td>1500</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>72</td>
<td>1250</td>
<td>375</td>
<td>375</td>
</tr>
</tbody>
</table>

**NOTE(S):**

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI–PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PO SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPERATLY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O,) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PO SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT AT THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.), LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SPOT WELD WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFUs FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. **NOTE(S):**

   1. This drawing represents a common configuration for this application. The pipe support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project specific design criteria and requirements.

   2. All loads assumed to act on the MIC-PG slide support, no eccentric loads included. Pipe connection hardware must be checked separately.

   3. Design assumptions: IBC 2012 building code; see table for design loads (static U.N.O.) Longitudinal loads are analyzed as earthquake loads and assume the U-bolt is loose fitting and the pipe rests on the MIC-PG slide support with a friction value of 0.15. Therefore the actual pipe system weight = the tables longitudinal load × 0.15.

   4. Refer to component manufacturer’s IF/FS for required installation information.

   5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
<table>
<thead>
<tr>
<th>Beam Width Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>( X )</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

### ELEVATION

**NOTE(S):**

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U,N,O,) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SPOTTED WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD * 0.15.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE PIPE SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI–PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE MIC-PG SLIDE SUPPORT, NO ECCENTRIC LOADS INCLUDED. PIPE CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N,O.) LONGITUDINAL LOADS ARE ANALYZED AS EARTHQUAKE LOADS AND ASSUME THE U-BOLT IS LOOSE FITTING AND THE PIPE RESTS ON THE MIC-PG SLIDE SUPPORT WITH A FRICTION VALUE OF 0.15, THEREFORE THE ACTUAL PIPE SYSTEM WEIGHT = THE TABLES LONGITUDINAL LOAD + 0.15.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.