01 ISOMETRIC

02 ELEVATION

NOE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 20/12 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.).
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. CONCRETE ANCHOR DESIGN BASED ON KB-TZ WITH EFFECTIVE EMBEDMENT DEPTHS OF 2" FOR 1/16" AND 3.125" FOR 1/8" IN 5" THICK 3,000 PSI CRACKED CONCRETE WITH INFINITE EDGE DISTANCE. HIGHER SUPPORT LOADS MAY BE OBTAINED WITH DEEPER EMBEDMENTS, HIGHER CONCRETE STRENGTHS OR CHEMICAL ANCHORS.

<table>
<thead>
<tr>
<th>No.</th>
<th>Unit Qty</th>
<th>Unit Description</th>
<th>Box Qty</th>
<th># Boxes Needed</th>
<th>Item No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>EA BASE MGP-2''-72-F</td>
<td>12</td>
<td>1</td>
<td>304165</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>EA ANGLE BRACE MOK-SL-F (WAG #304128)</td>
<td>10</td>
<td>1</td>
<td>SPECIAL</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>EA CHANNEL CONNECTOR MQV-HDG PLUS</td>
<td>50</td>
<td>1</td>
<td>397779</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>EA CHANNEL END CAP MEK RED</td>
<td>50</td>
<td>1</td>
<td>244896</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>EA USE KB3 OR KB-TZ AS APPROPRIATE - HDG OR SS</td>
<td>VARIES</td>
<td>VARIES</td>
<td>VARIES</td>
</tr>
<tr>
<td>6</td>
<td>AS REQ'D</td>
<td>EA STRUT HS-13''-6'-12'HDG 10'' B2B</td>
<td>VARIES</td>
<td>AS REQ'D</td>
<td>SPECIAL</td>
</tr>
</tbody>
</table>
CABLE TRAY AND CLIP (BY OTHERS)

NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (CODE L,U,C).
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. CONCRETE ANCHOR DESIGN BASED ON KB-TZ WITH EFFECTIVE EMBEDMENT DEPTHS OF 2" FOR 1/4" AND 3.125" FOR 5/8" IN 5" THICK 3,000 PSI CRACKED CONCRETE WITH INFINITE EDGE DISTANCE. HIGHER SUPPORT LOADS MAY BE OBTAINED WITH DEEPER EMBEDMENTS, HIGHER CONCRETE STRENGTHS OR CHEMICAL ANCHORS.
CABLE TRAY BRACED CANTILEVER CONCRETE

NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES. AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFUS FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
TYPICAL DETAILS

CABLE TRAY BRACED CANTILEVER CONCRETE

NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

4. REFER TO COMPONENT MANUFACTURER'S IFUS FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
Maximum L1 (ft) | Allowable Vertical Load (lbs) | Allowable Transverse Load (lbs) | Allowable Longitudinal Load (lbs)
--- | --- | --- | ---
48 | 280 | 84 | 15
60 | 160 | 48 | 15
72 | 76 | 22.5 | 12

CABLE TRAY AND CLIPS (BY OTHERS)

1. This drawing represents a common configuration for this application. The cable tray (CT) support is load-rated and dimensionally limited based on Hilti–published static load data and design methodologies, and generic, non-project-specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project-specific design criteria and requirements.

2. All loads assumed to act on the support, no eccentric loads included. CT connection hardware must be checked separately.

3. Design assumptions: IBC 2012 building code; see table for design loads (static U.N.O.)

4. Refer to component manufacturer’s IFU’s for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI—PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI—PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD-RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. CONCRETE ANCHOR DESIGN BASED ON KB-TZ WITH EFFECTIVE EMBEDMENT DEPTHS OF 2” FOR 1/2” AND 3.125” FOR 5/8” IN 5” THICK 3,000 PSI CRACKED CONCRETE WITH INFINITE EDGE DISTANCE. HIGHER SUPPORT LOADS MAY BE OBTAINED WITH DEEPER EMBEDMENTS, HIGHER CONCRETE STRENGTHS OR CHEMICAL ANCHORS.
CABLE TRAY AND CLIPS (BY OTHERS)

NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI—PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 20/2 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.).

4. REFER TO COMPONENT MANUFACTURER'S IFUs FOR REQUIRED INSTALLATION INFORMATION.

5. CONCRETE ANCHOR DESIGN BASED ON KB-TZ WITH EFFECTIVE EMBEDMENT DEPTHS OF 2" FOR 3/8" and 3.125" FOR 5/8" IN 5" THICK 3,000 PSI CRACKED CONCRETE WITH INFINITE EDGE DISTANCE. HIGHER SUPPORT LOADS MAY BE OBTAINED WITH DEEPER EMBEDMENTS, HIGHER CONCRETE STRENGTHS OR CHEMICAL ANCHORS.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE, SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFUS FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. **THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION.** THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI—PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. **ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED.** CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. **DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.).**

4. **REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.**

5. **FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.**

<table>
<thead>
<tr>
<th>MAXIMUM L1 (in)</th>
<th>ALLOWABLE VERTICAL LOAD (lbs.)</th>
<th>ALLOWABLE TRANSVERSE LOAD (lbs.)</th>
<th>ALLOWABLE LONGITUDINAL LOAD (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>78</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>55</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>72</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE(S):

SERVICE REQUEST DESCRIPTION:

CABLE TRAY CANTILEVER (MQ) STEEL

REVISIONS:

DRIVEN BY:

DRAWN BY:

DATE:

PROJECT NAME:

TYPICAL DETAILS:

HILTI
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.

3. DESIGN ASSUMPTIONS:IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC,U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI–PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: BIC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
This drawing represents a common configuration for this application. The cable tray (CT) support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project-specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual project-specific design criteria and requirements.

All loads assumed to act on the support, no eccentric loads included. CT connection hardware must be checked separately.

Refer to component manufacturer’s IFU’s for required installation information.

For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
TYPICAL DETAILS

CABLE TRAY F-FRAME (MQ) CONCRETE

NOTE:
1. This drawing represents a common configuration for this application. The cable tray (CT) support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies and generic, non-project-specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project-specific design criteria and requirements.

2. All loads assumed to act on the support, no eccentric loads included. CT connection hardware must be checked separately.

3. Design assumptions: IBC 20/2 building code; see table for design loads (static U.N.O.)

4. Refer to component manufacturer’s IFUs for required installation information.

5. Concrete anchor design based on KB-TZ with effective embedment depths of 2” for 1/2” and 3.125” for 5/8” in 5” thick 3,000 PSI cracked concrete with infinite edge distance. Higher support loads may be obtained with deeper embedments, higher concrete strengths or chemical anchors.

Table:

<table>
<thead>
<tr>
<th>Maximum H1 (Ft)</th>
<th>Maximum H2 (In)</th>
<th>Allowable Vertical Load (lbs)</th>
<th>Allowable Transverse Load (lbs)</th>
<th>Allowable Longitudinal Load (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>36</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>48</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>72</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ISOMETRIC:

- CABLE TRAY AND CLIPS (BY OTHERS)
CABLE TRAY AND CLIPS (BY OTHERS)

NOTE(S):

1. **THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.**

2. **ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.**

3. **DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)**

4. **REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.**

5. **FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.**
CABLE TRAY AND CLIPS (BY OTHERS)

NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC UNO.)
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
MAXIMUM
H1 (in.)
MAXIMUM
H2 (in.)
ALLOWABLE
VERTICAL
LOAD (lbs)
ALLOWABLE
TRANSVERSE
LOAD (lbs)
ALLOWABLE
LONGITUDINAL
LOAD (lbs)

48
36
50
0
0

60
48
45
0
0

72
60
40
0
0

CABLE TRAY AND CLIPS
(BY OTHERS)

TRANVERSE

LONGITUDINAL

(SEE NOTE 5)

NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI—PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES. AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATLY.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED, CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT. NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFUS FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
CABLE TRAY AND CLIPS (BY OTHERS)

MAXIMUM ALLOCABLE VERTICAL LOAD (lbs.) ALLOCABLE TRANSVERSE LOAD (lbs.) ALLOCABLE LONGITUDINAL LOAD (lbs.)
48 65 19.5 19.5
60 50 15 15
72 46 13.5 13.5

NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC L.N.O.).
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. CONCRETE ANCHOR DESIGN BASED ON KB-TZ WITH EFFECTIVE EMBEDMENT DEPTHS OF 2” FOR 1/4” AND 3.125” FOR 5/8” IN 5” THICK 3,000 PSI CRACKED CONCRETE WITH INFINITE EDGE DISTANCE. HIGHER SUPPORT LOADS MAY BE OBTAINED WITH DEEPER EMBEDMENTS, HIGHER CONCRETE STRENGTHS OR CHEMICAL ANCHORS.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.

4. REFER TO COMPONENT MANUFACTURER'S IFUS FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. This drawing represents a common configuration for this application. The cable tray (CT) support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project-specific design criteria and requirements.

2. All loads assumed to act on the support, no eccentric loads included. CT connection hardware must be checked separately.

4. Refer to component manufacturer's IFU's for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.
<table>
<thead>
<tr>
<th>MAXIMUM H (in.)</th>
<th>ALLOWABLE VERTICAL LOAD (lbs.)</th>
<th>ALLOWABLE TRANSVERSE LOAD (lbs.)</th>
<th>ALLOWABLE LONGITUDINAL LOAD (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>130</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>60</td>
<td>104</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>72</td>
<td>87</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

CABLE TRAY AND CLIPS (BY OTHERS)

NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI—PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI- PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI–PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. CONCRETE ANCHOR DESIGN BASED ON KB-TZ WITH EFFECTIVE EMBEDMENT DEPTHS OF 2" FOR 1/4" AND 3.125" FOR 5/8" IN 5" THICK 3,000 PSI CRACKED CONCRETE WITH INFINITE EDGE DISTANCE. HIGHER SUPPORT LOADS MAY BE OBTAINED WITH DEEPER EMBEDMENTS, HIGHER CONCRETE STRENGTHS OR CHEMICAL ANCHORS.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. CONCRETE ANCHOR DESIGN BASED ON KB-TZ WITH EFFECTIVE EMBEDMENT DEPTHS OF 2" FOR 1/8" AND 3.125" FOR 5/8" IN 5" THICK 3,000 PSI CRACKED CONCRETE WITH INFINITE EDGE DISTANCE. HIGHER SUPPORT LOADS MAY BE OBTAINED WITH DEEPER EMBEDMENTS, HIGHER CONCRETE STRENGTHS OR CHEMICAL ANCHORS.
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
TYPICAL DETAILS

CABLE TRAY T-POST CONCRETE

<table>
<thead>
<tr>
<th>MAXIMUM H (in)</th>
<th>ALLOWABLE VERTICAL LOAD (lbs)</th>
<th>ALLOWABLE TRANSVERSE LOAD (lbs)</th>
<th>ALLOWABLE LONGITUDINAL LOAD (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>2200</td>
<td>660</td>
<td>660</td>
</tr>
<tr>
<td>60</td>
<td>1600</td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td>72</td>
<td>1140</td>
<td>342</td>
<td>342</td>
</tr>
</tbody>
</table>

1. **NOTE(S):**
 1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
 2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT. NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATLY.
 4. REFER TO COMPONENT MANUFACTURER'S IFUs FOR REQUIRED INSTALLATION INFORMATION.
 5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI—PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI--PUBLISHED STATIC LOAD DATA AND DESIGN METHODS, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
CABLE TRAY T-POST STEEL

NOTE(S):

1. **THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION.** THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. **ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED.** CT CONNECTION HARDWARE MUST BE SEPARATELY

3. **DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)**

4. **REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.**

5. **FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.**

Beam Width Table

<table>
<thead>
<tr>
<th>X</th>
<th>B Width</th>
<th>Item No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.9 to 6.5</td>
<td>304812</td>
</tr>
<tr>
<td>B</td>
<td>6.5 to 9.2</td>
<td>304813</td>
</tr>
<tr>
<td>C</td>
<td>9.2 to 11.8</td>
<td>304814</td>
</tr>
</tbody>
</table>

MAXIMUM H (lbs) | ALLOWABLE VERTICAL LOAD (lbs) | ALLOWABLE TRANSVERSE LOAD (lbs) | ALLOWABLE LONGITUDINAL LOAD (lbs)

48	600	180	180
60	500	150	150
72	420	120	120

02. ELEVATION

TYPICAL DETAILS

PROJECT:

CABLE TRAY T-POST STEEL

REVIEWED BY:

DRAWN BY:

DRAWING NUMBER:

SHEET:

01

1/1
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI—PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. CONCRETE ANCHOR DESIGN BASED ON KB-TZ WITH EFFECTIVE EMBEDMENT DEPTHS OF 2” FOR 3/8” AND 3.125” FOR 5/8” IN 5” THICK 3,000 PSI CRACKED CONCRETE WITH INFINITE EDGE DISTANCE. HIGHER SUPPORT LOADS MAY BE OBTAINED WITH DEEPER EMBEDMENTS, HIGHER CONCRETE STRENGTHS OR CHEMICAL ANCHORS.
NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-RPUBISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT-SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 20/2 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.).

4. REFER TO COMPONENT MANUFACTURER'S IFUs FOR REQUIRED INSTALLATION INFORMATION.

5. CONCRETE ANCHOR DESIGN BASED ON KB-TZ WITH EFFECTIVE EMBEDMENT DEPTHS OF 2" FOR 1/2" AND 3.125" FOR 5/8" IN 5" THICK 3,000 PSI CRACKED CONCRETE WITH INFINITE EDGE DISTANCE. HIGHER SUPPORT LOADS MAY BE OBTAINED WITH DEEPER EMBEDMENTS, HIGHER CONCRETE STRENGTHS OR CHEMICAL ANCHORS.
CONCRETE SLAB NOT SHOWN FOR CLARITY

CABLE TRAY AND CLIPS
(BY OTHERS)

NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS
APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND
DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND
DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN
ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS
SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT
SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS
INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPERATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN
LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFUs FOR REQUIRED
INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR
THE PROJECT SITE ENGINEER OF RECORD.
1. This drawing represents a common configuration for this application. The cable tray (CT) support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies. And generic, non-project specific design assumptions. The engineer of record shall evaluate this support to determine its suitability for the actual project specific design criteria and requirements.

2. All loads assumed to act on the support, no eccentric loads included. CT connection hardware must be checked separately.

4. Refer to component manufacturer's IFUS for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.

NOTE(S):
Maximum load calculations are based on the assumption that the component is installed in accordance with the manufacturer's instructions and that all loads are applied in the manner described. The table below provides the maximum allowable loads for different configurations of the component.

MAXIMUM LOADS

<table>
<thead>
<tr>
<th>Component</th>
<th>Vertical Load (lbs)</th>
<th>Transverse Load (lbs)</th>
<th>Longitudinal Load (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM</td>
<td>72</td>
<td>145</td>
<td>0</td>
</tr>
</tbody>
</table>

Note:
1. **THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION.** The cable tray (CT) support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project-specific design criteria and requirements.
2. **ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED.** CT connection hardware must be checked separately.
3. **DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.**
4. **REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.**
5. **FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.**
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
Maximum H (in.)

<table>
<thead>
<tr>
<th>H</th>
<th>Allowable Vertical Load (lbs.)</th>
<th>Allowable Transverse Load (lbs.)</th>
<th>Allowable Longitudinal Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>1200</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>60</td>
<td>1000</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>72</td>
<td>800</td>
<td>240</td>
<td>240</td>
</tr>
</tbody>
</table>

Elevation

- **Cable Tray and Clips (by others)**
- **7.8**
- **6'-0''**

Beam Width Table

<table>
<thead>
<tr>
<th>X</th>
<th>B' Width</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.9 to 5.5</td>
<td>304812</td>
</tr>
<tr>
<td>B</td>
<td>5.5 to 9.2</td>
<td>304813</td>
</tr>
<tr>
<td>C</td>
<td>9.2 to 11.8</td>
<td>304814</td>
</tr>
</tbody>
</table>

Note(s):

1. **This drawing represents a common configuration for this application.** The cable tray (CT) support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual project specific design criteria and requirements.

2. **All loads assumed to act on the support, no eccentric loads included.** CT connection hardware must be checked separately.

3. **Design Assumptions:** IBC 2012 Building Code; see table for design loads (static U.N.O.).

4. **Refer to component manufacturer’s IFU’s for required installation information.**

5. **For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.**
TYPICAL DETAILS

CABLE TRAY TRAPEZE STEEL

NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI—PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.