

ICC-ES Report

ICC-ES | (800) 423-6587 | (562) 699-0543 | www.icc-es.org

ESR-2322

Reissued 04/2016 This report is subject to renewal 04/2017.

DIVISION: 03 00 00—CONCRETE

SECTION: 03 16 00—CONCRETE ANCHORS

DIVISION: 05 00 00—METALS

SECTION: 05 05 19—POST-INSTALLED CONCRETE ANCHORS

REPORT HOLDER:

HILTI, INC.

7250 DALLAS PARKWAY, SUITE 1000 PLANO, TEXAS 75024

EVALUATION SUBJECT:

HILTI HIT-RE 500-SD ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

Look for the trusted marks of Conformity!

"2014 Recipient of Prestigious Western States Seismic Policy Council (WSSPC) Award in Excellence"

r a

Accredited Program
OUCT CERTIFICATION
#1000
Accredited Program
Accredited Program
Accredited Program
Accredited Program

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

ICC-ES Evaluation Report

ESR-2322

Reissued April 2016 Revised June 2016

This report is subject to renewal April 2017.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00-METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.
7250 DALLAS PARKWAY, SUITE 1000
PLANO, TEXAS 75024
(918) 872-8000
www.us.hilti.com
HiltiTechEng@us.hilti.com

EVALUATION SUBJECT:

HILTI HIT-RE 500-SD ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2015, 2012, 2009 and 2006 *International Building Code*® (IBC)
- 2015, 2012, 2009 and 2006 International Residential Code® (IRC)
- 2013 Abu Dhabi International Building Code (ADIBC)[†]

 $^{\dagger}\text{The ADIBC}$ is based on the 2009 IBC. 2009 IBC code sections refernced in this report are the same sections in ADIBC.

Property evaluated:

Structural

2.0 USES

The Hilti HIT-RE 500-SD Adhesive Anchoring System and Post-Installed Reinforcing Bar System are used to resist static, wind and earthquake (Seismic Design Categories A through F) tension and shear loads in cracked and uncracked normal-weight concrete having a specified compressive strength, f'_c , of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

The anchor system complies with anchors as described in Section 1901.3 of the 2015 IBC, Section 1909 of the 2012 IBC and is an alternative to cast-in-place and post-installed anchors described in Section 1908 of the 2012 IBC, and Sections 1911 and 1912 of the 2009 and

2006 IBC. The anchor systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

The post-installed reinforcing bar system is an alternative to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19.

3.0 DESCRIPTION

3.1 General:

The Hilti HIT-RE 500-SD Adhesive Anchoring System and Post-Installed Reinforcing Bar System are comprised of the following components:

- Hilti HIT-RE 500-SD adhesive packaged in foil packs
- · Adhesive mixing and dispensing equipment
- Equipment for hole cleaning and adhesive injection

The Hilti HIT-RE 500-SD Adhesive Anchoring System may be used with continuously threaded rod, Hilti HIS-(R)N and HIS-RN internally threaded inserts or deformed steel reinforcing bars. The Hilti HIT-RE 500-SD Post-Installed Reinforcing Bar System may only be used with deformed steel reinforcing bars. The primary components of the Hilti Adhesive Anchoring and Post-Installed Reinforcing Bar Systems, including the Hilti HIT-RE 500-SD Adhesive, HIT-RE-M static mixing nozzle and steel anchoring elements, are shown in Figure 5 of this report.

The manufacturer's printed installation instructions (MPII), as included with each adhesive unit package, are replicated as Figure 8 of this report.

3.2 Materials:

3.2.1 Hilti HIT-RE 500-SD Adhesive: Hilti HIT-RE 500-SD Adhesive is an injectable two-component epoxy adhesive. The two components are separated by means of a dual-cylinder foil pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold. Hilti HIT-RE 500-SD is available in 11.1-ounce (330 ml), 16.9-ounce (500 ml), and 47.3-ounce (1400 ml) foil packs. The manifold attached to each foil pack is stamped with the adhesive expiration date. The shelf life, as indicated by the expiration date, corresponds to an unopened foil pack stored in a dry, dark environment, in accordance with the MPII.

3.2.2 Hole Cleaning Equipment:

3.2.2.1 Standard Equipment: Standard hole cleaning equipment, comprised of steel wire brushes and air nozzles, is described in Figure 8 of this report.

- 3.2.2.2 Hilti Safe-Set™ System: For the elements described in Sections 3.2.4 and 3.2.5, the Hilti TE-CD or TE-YD hollow carbide drill bit with a carbide drilling head conform to ANSI B212.15 must be used. Used in conjunction with a Hilti VC 20/40 vacuum, the Hilti TE-CD or TE-YD drill bit will remove the drilling dust, automatically cleaning the hole.
- 3.2.3 Dispensers: Hilti HIT-RE 500-SD must be dispensed with manual dispensers, pneumatic dispensers, or electric dispensers provided by Hilti and detailed in Figure 8.

3.2.4 Anchor Elements:

- 3.2.4.1 Threaded Steel Rods: Threaded steel rods must be clean, continuously threaded rods (all-thread) in diameters as described in Tables 7 and 11 and Figure 8 of this report. Steel design information for common grades of threaded rods are provided in Table 2 and Table 3. Carbon steel threaded rods must be furnished with a 0.005-millimeter-thick (5 µm) zinc electroplated coating complying with ASTM B633 SC 1 or must be hot-dipped galvanized complying with ASTM A153, Class C or D. Threaded steel rods must be straight and free of indentations or other defects along their length. The ends may be stamped with identifying marks and the embedded end may be blunt cut or cut on the bias (chisel point).
- 3.2.4.2 Steel Reinforcing Bars for use in Post-Installed Anchor Applications: Steel reinforcing bars are deformed bars (rebar). Tables 23, 27 and 31 and Figure 8 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in ACI 318-14 Section 26.6.3.1 (b) or ACI 318-11 Section 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.
- 3.2.4.3 HIS-N and HIS-RN Inserts: Hilti HIS-N and HIS-RN inserts have a profile on the external surface and are internally threaded. Tensile properties for HIS-N and HIS-RN inserts are provided in Table 4. The inserts are available in diameters and lengths as shown in Tables 15 and 19 and Figure 8. HIS-N inserts are produced from carbon steel and furnished either with a 0.005-millimeterthick (5 µm) zinc electroplated coating complying with ASTM B633 SC 1 or a hot-dipped galvanized coating complying with ASTM A153, Class C or D. The stainless steel HIS-RN inserts are fabricated from X5CrNiMo17122 K700 steel conforming to DIN 17440. Specifications for common bolt types that may be used in conjunction with HIS-N and HIS-RN inserts are provided in Table 5. Bolt grade and material type (carbon, stainless) must be matched to the insert. Strength reduction factors, ϕ , corresponding to brittle steel elements must be used for HIS-N and HIS-RN inserts.
- 3.2.4.4 Ductility: In accordance with ACI 318-14 2.3 or ACI 318-11 D.1, as applicable, in order for a steel element to be considered ductile, the tested elongation must be at least 14 percent and reduction of area must be at least 30 percent. Steel elements with a tested elongation less than 14 percent or a reduction of area less than 30 percent, or both, are considered brittle. Values for various common steel materials are provided in Tables 2, 3 and 5 of this report. Where values are nonconforming or unstated, the steel must be considered brittle.
- 3.2.5 Steel Reinforcing Bars for Use in Post-Installed Reinforcing Bar Connections: Steel reinforcing bars

used in post-installed reinforcing bar connections are deformed bars (rebar). Tables 35, 36, 37, and Figure 8 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in ACI 318-14 Section 26.6.3.1 (b) or ACI 318-11 Section 7.3.2, as applicable with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.3 Concrete:

Normal-weight concrete must comply with Section 1903 and 1905 of the IBC, as applicable. The specified compressive strength of concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

4.0 DESIGN AND INSTALLATION

4.1 Strength Design of Post-Installed Anchors:

4.1.1 General: The design strength of anchors uder the 2015 IBC, as well as the 2015 IRC, must be determined in accordance with ACI 318-14 and this report.

The design strength of anchors under the 2012, 2009 and 2006 IBC, as well as the 2012, 2009 and 2006 IRC, must be determined in accordance with ACI 318-11 and this report.

A design example according to the 2012 IBC based on ACI 318-11 is given in Figure 6 of this report.

Design parameters are based on ACI 318-14 for use with the 2015 IBC and ACI 318-11 for use with the 2012, 2009 and 2006 IBC unless noted otherwise in Sections 4.1.1 through 4.1.11 of this report.

The strength design of anchors must comply with ACI 318-14 17.3.1 or ACI 318-11 D.4.1, as applicable, except as required in ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.

Design parameters are provided in Tables 7 through 34 of this report. Strength reduction factors, ϕ , as given in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, must be used for load combinations calculated in accordance with Section 1605.2 of the IBC or ACI 318-14 5.3 or ACI 318-11 9.2, as applicable. Strength reduction factors, ϕ , as given in ACI 318-11 D.4.4, must be used for load combinations calculated in accordance with ACI 318-11 Appendix C.

- 4.1.2 Static Steel Strength in Tension: The nominal static steel strength of an anchor in tension, Nsa, in accordance with ACI 318-14 17.4.1.2 or ACI 318-11 D.5.1.2, as applicable, and the associated strength reduction factor, ϕ , in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are provided in the tables outlined in Table 1 for the corresponding anchor steel.
- 4.1.3 Static Concrete Breakout Strength in Tension: The nominal static concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable, using the values of $k_{c,cr}$, and $k_{c,uncr}$ as provided in Tables 8, 12, 16, 20, 24, 28 and 32 of this report. Where analysis indicates no cracking in accordance with ACI 318-14 17.4.2.6 or ACI 318-11 D.5.2.6, as applicable, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N}$ = 1.0. See Table 1. For anchors in lightweight concrete see ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable. The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-14 17.4.5 or ACI 318-11 D.5.5, as applicable. Bond strength values are a function of the concrete compressive strength, whether the concrete is cracked or uncracked, the concrete temperature range, the drilling method (hammer drill, core drill) and the installation conditions (dry, water-saturated, etc.). The resulting characteristic bond strength must be multiplied by the associated strength factor ϕ_{nn} as follows:

	CR	H O L	H	PERMISSIBLE INSTALLATION CONDITIONS	BOND STRENGTH	ASSOCIATED STRENGTH REDUCTION FACTOR
CO	A C	Е	M	Dry concrete	$ au_{k,cr}$	$\phi_{\!\scriptscriptstyle d}$
N	KED	D	M	Water-saturated	$ au_{k,cr}$	$\phi_{\scriptscriptstyle extsf{WS}}$
C R E T		R	R	Water-filled hole	$ au_{k,cr}$	$\phi_{\scriptscriptstyle{ ext{W}f}}$
			D R	Underwater application	$\mathcal{T}_{k,cr}$	$\phi_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
E		I N	Ï	Dry concrete	$ au_{k,uncr}$	ϕ_{a}
Т	U	G	L	Water-saturated	$T_{k,uncr}$	ϕ_{ws}
Y P	C R	М		Water-filled hole	$T_{k,uncr}$	$\phi_{\scriptscriptstyle{ extsf{W}^{f}}}$
E S	A	E T		Underwater application	$ au_{k,uncr}$	$\phi_{\!\scriptscriptstyle \mathrm{UW}}$
	K	НО	O (Dry concrete	$T_{k,uncr}$	ϕ_{d}
	E D	ם	O R E	Water saturated	$ au_{k,uncr}$	$\phi_{\!\scriptscriptstyle{ extsf{WS}}}$

Figure 4 of this report presents a bond strength design selection flowchart. Strength reduction factors for determination of the bond strength are given in Tables 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33 and 34. See Table 1. Adjustments to the bond strength may also be made for increased concrete compressive strength as noted in the footnotes to the corresponding tables.

- **4.1.5 Static Steel Strength in Shear:** The nominal static strength of an anchor in shear as governed by the steel, V_{sa} , in accordance with ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, and strength reduction factor, ϕ , in accordance with ACI 318-14 17.2.3 or ACI 318-11 D.4.3, as applicable, are given in the tables outlined in Table 1 for the anchor element types included in this report.
- **4.1.6 Static Concrete Breakout Strength in Shear:** The nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, based on information given in the tables outlined in Table 1 for the corresponding anchor steel. The basic concrete breakout strength of a single anchor in shear, V_b , must be calculated in accordance with ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable, using the values of d given in the tables as outlined in Table 1 for the corresponding anchor steel in lieu of d_a (2015, 2012 and 2009 IBC) and d_o (2006 IBC). In addition, h_{ef} shall be substituted for ℓ_e . In no case must ℓ_e exceed

- 8d. The value of f'_c must be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as aplicable.
- **4.1.7 Static Concrete Pryout Strength in Shear:** The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , must be calculated in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable.
- **4.1.8 Interaction of Tensile and Shear Forces:** For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 17.6 or ACI 318-11 D.7, as applicable.
- **4.1.9 Minimum Member Thickness** h_{min} , **Anchor Spacing** s_{min} and **Edge Eistance** c_{min} : In lieu of ACI 318-14 17.7.1 and 17.7.3 or ACI 318-11 D.8.1 and D.8.3, respectively, as applicable, values of s_{min} and c_{min} described in this report must be observed for anchor design and installation. In lieu of ACI 318-14 17.7.5 or ACI 318-11 D.8.5, as applicable, the minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318-14 17.7.4 or ACI 318-11 D.8.4, as applicable, applies.

For edge distances c_{ai} and anchor spacing s_{ai} the maximum torque T_{max} shall comply with the following requirements:

REDUCED MAXIMUM INSTALLATION TORQUE $T_{max,red}$ FOR EDGE DISTANCES $c_{ai} < (5 \times d_a)$									
EDGE DISTANCE, c _{ai}	MINIMUM ANCHOR SPACING, s_{ai}	MAXIMUM TORQUE, T _{max,red}							
1.75 in. (45 mm) ≤ c _{ai}	$5 \times d_a \le s_{ai} < 16 \text{ in.}$	0.3 x <i>T_{max}</i>							
< 5 x d _a	$s_{ai} \ge 16 \text{ in. } (406 \text{ mm})$	0.5 x T _{max}							

4.1.10 Critical Edge Distance c_{ac} and $\psi_{cp,Na}$: The modification factor $\psi_{cp,Na}$, must be determined in accordance with ACI 318-14 17.4.5.5 or ACI 318-11 D.5.5.5, as applicable, except as noted below:

For all cases where c_{Na}/c_{ac} <1.0, $\psi_{cp,Na}$ determined from ACI 318-14 Eq. 17.4.5.5b or ACI 318-11 Eq. D-27, as applicable, need not be taken less than c_{Na}/c_{ac} . For all other cases, $\psi_{cp,Na}$ shall be taken as 1.0.

The critical edge distance, c_{ac} must be calculated according to Eq. 17.4.5.5c for ACI 318-14 or Eq. D-27a for ACI 318-11, in lieu of ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable.

$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k, uncr}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$

(Eq. 17.4.5.5c for ACI 318-14 or Eq. D-27a for ACI 318-11)

where $\left[\frac{h}{h_{ef}}\right]$ need not be taken as larger than 2.4; and

 $\tau_{k,\;uncr}$ = characteristic bond strength stated in the tables of this report where by $\tau_{k,uncr}$ need not be taken as larger than:

$$\tau_{k,uncr} = \frac{k_{uncr} \sqrt{h_{ef} f_c'}}{\pi \cdot d_c}$$
 Eq. (4-1)

4.1.11 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchors must be designed in accordance with ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, except as described below.

Modifications to ACI 318-14 17.2.3 shall be applied under Section 1905.1.8 of the 2015 IBC. For the 2012 IBC, Section 1905.1.9 Shall be omitted. Modifications to ACI 318 (-08, -05) D.3.3 must be applied under Section 1908.1.9 of the 2009 IBC or Section 1908.1.16 of the 2006 IBC, as applicable.

The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in the tables summarized in Table 1 for the corresponding anchor steel. The nominal bond strength $\tau_{k,cr}$ must be adjusted by $\alpha_{N,seis}$ as given in the tables summarized in Table 1 for the corresponding anchor steel.

As an exception to ACI 318-11 D.3.3.4.2:

Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 shall be deemed to satisfy ACI 318-11 D.3.3.4.3(d).

Under ACI 318-11 D.3.3.4.3(d)), in lieu of requiring the anchor design tensile strength to satisfy the tensile strength requirements of ACI 318-11 D.4.1.1, the anchor design tensile strength shall be calculated from ACI 318-11 D.3.3.4.4.

The following exceptions apply to ACI 318-11 D.3.3.5.2:

- 1. For the calculation of the in-plane shear strength of anchor bolts attaching wood sill plates of bearing or non-bearing walls of light-frame wood structures to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 1.1. The allowable in-plane shear strength of the anchor is determined in accordance with AF&PA NDS Table 11E for lateral design values parallel to grain.
 - 1.2. The maximum anchor nominal diameter is $^5/_8$ inch (16 mm).
 - 1.3. Anchor bolts are embedded into concrete a minimum of 7 inches (178 mm).
 - 1.4. Anchor bolts are located a minimum of 1³/₄ inches (45 mm) from the edge of the concrete parallel to the length of the wood sill plate.
 - 1.5. Anchor bolts are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the wood sill plate.
 - 1.6. The sill plate is 2-inch or 3-inch nominal thickness.
- 2. For the calculation of the in-plane shear strength of anchor bolts attaching cold-formed steel track of bearing or non-bearing walls of light-frame construction to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:
 - 2.1. The maximum anchor nominal diameter is ⁵/₈ inch (16 mm).
 - 2.2. Anchors are embedded into concrete a minimum of 7 inches (178 mm).
 - 2.3. Anchors are located a minimum of 1³/₄ inches (45 mm) from the edge of the concrete parallel to the length of the track.
 - 2.4. Anchors are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the track.
 - 2.5. The track is 33 to 68 mil designation thickness.

Allowable in-plane shear strength of exempt anchors, parallel to the edge of concrete shall be permitted to be determined in accordance with AISI S100 Section F3.3.1.

3. In light-frame construction, bearing or nonbearing walls, shear strength of concrete anchors less than or equal to 1 inch [25 mm] in diameter attaching a sill plate or track to foundation or foundation stem wall need not satisfy ACI 318-11 D.3.3.5.3 (a) through (c) when the design strength of the anchors is determined in accordance with ACI 318-11 D.6.2.1(c).

4.2 Strength Design of Post-Installed Reinforcing Bars:

4.2.1 General: The design of straight post-installed deformed reinforcing bars must be determined in accordance with ACI 318 rules for cast-in place reinforcing bar development and splices and this report.

Examples of typical applications for the use of postinstalled reinforcing bars are illustrated in Figure 3 of this report.

A design example in accordance with the 2012 IBC based on ACI 318-11 is given in Figure 7 of this report.

4.2.2 Determination of bar development length I_a : Values of I_d must be determined in accordance with the ACI 318 development and splice length requirements for straight cast-in place reinforcing bars. The value of f_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in holes drilled with a core drill.

Exceptions:

- 1. The value of f'c to be inserted in ACI 318-14 25.4.2.2, 25.4.2.3, 25.4.9.2 and 25.4.9.3 or ACI 318-11 Section 12.2.2, 12.2.3, and 12.3.2, as applicable, shall not exceed 2,500 psi for post-installed reinforcing bar applications in diamond cored holes.
- 2. For uncoated and zinc-coated (galvanized) postinstalled reinforcing bars, the factor Ψ_e shall be taken as 1.0. For all other cases, the requirements in ACI 318-14 Table 25.4.2.4 or ACI 318-11 Section 12.2.4 (b) shall apply.
- 3. When using alternate methods to calculate the development length (e.g., anchor theory), the applicable factors for post-installed anchors generally apply.
- 4.2.3 Minimum Member Thickness, h_{min} , Minimum Concrete Cover, c_{c.min}, Minimum Concrete Edge Distance, $c_{b,min}$, Minimum Spacing, $s_{b,min}$.: For postinstalled reinforcing bars, there is no limit on the minimum member thickness. In general, all requirements on concrete cover and spacing applicable to straight cast-in bars designed in accordance with ACI 318 shall be maintained.

post-installed reinforcing bars installed embedment depths, h_{ef} , greater than 20d ($h_{ef} > 20d$), the minimum concrete cover shall be as follows:

REBAR SIZE	MINIMUM CONCRETE COVER, $c_{c,min}$				
$d_b \leq No. 6 (16mm)$	1 ³ / ₁₆ in.(30mm)				
No. $6 < d_b \le No.10$ (16mm $< d_b \le 32mm$)	1 ⁹ / ₁₆ in. (40mm)				

The following requirements apply for minimum concrete edge and spacing for $h_{ef} > 20d$:

Required minimum edge distance for post-installed reinforcing bars (measured from the center of the bar):

$$c_{b,min} = d_0/2 + c_{c,min}$$

Required minimum center-to-center spacing between postinstalled bars:

$$s_{b.min} = d_0 + c_{c.min}$$

Required minimum center-to-center spacing from existing (parallel) reinforcing:

 $s_{b,min} = d_b/2$ (existing reinforcing) + $d_0/2$ + $c_{c,min}$

4.2.4 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Category C, D, E or F under the IBC or IRC, design of straight postinstalled reinforcing bars must take into account the provisions of ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable. The value of f_c to be used in ACI 318-14 25.4.2.2, 25.4.2.3, and 25.4.9.2, or ACI 318-11 Section 12.2.2, 12.2.3, and 12.3.2, as applicable, calculations shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and F.

4.3 Installation:

Installation parameters are illustrated in Figures 1, 2, 3, and 8 of this report. Installation must be in accordance with ACI 318-14 17.8.1 and 17.8.2; ACI 318-11 D.9.1 and D.9.2; or ACI 318 (-08, -05) D.9.1, as applicable. Anchor and post-installed reinforcing bar locations must comply with this report and the plans and specifications approved by the code official. Installation of the Hilti HIT-RE 500-SD Adhesive Anchor and Post-Installed Reinforcing Bar Systems must conform to the manufacturer's printed installation instructions (MPII) included in each unit package as described in Figure 8 of this report. The MPII contains additional requirements for combinations of drill hole depth, diameter, drill bit type, and dispensing tools.

4.4 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2015 and 2012 IBC, Section 1704.15 and Table 1704.4 of the 2009 IBC or Section 1704.13 of the 2006 IBC and this report. The special inspector must be on the jobsite during anchor or post-installed reinforcing bar installation to verify anchor or post-installed reinforcing bar type and dimensions, concrete type, concrete compressive strength, adhesive identification and expiration date, hole dimensions, hole cleaning procedures, spacing, edge distances, concrete thickness, anchor or post-installed reinforcing bar embedment, tightening torque and adherence to the manufacturer's printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor or post-installed reinforcing bar by construction personnel on site. Subsequent installations of the same anchor or post-installed reinforcing bar type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor or post-installed reinforcing bar product being installed or the personnel performing the installation must require an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors or post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed in accordance with ACI 318-14 17.8.2.4, 26.7.1(h), and 26.13.3.2(c) or ACI 318-11 D.9.2.4, as applicable.

Under the IBC, additional requirements as set forth in Sections 1705, 1706, and 1707 must be observed, where applicable.

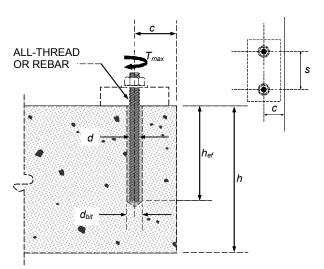
5.0 CONDITIONS OF USE

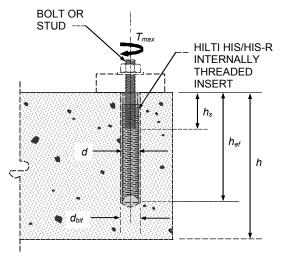
The Hilti HIT-RE 500-SD Adhesive Anchor System and Post-Installed Reinforcing Bar System described in this report is a suitable alternative to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- 5.1 Hilti HIT-RE 500-SD adhesive anchors and postinstalled reinforcing bars must be installed in accordance with the manufacturer's printed installation instructions as included in the adhesive packaging and described in Figure 8 of this report.
- 5.2 The anchors and post-installed reinforcing bars must be installed in cracked and uncracked normal-weight concrete having a specified compressive strength f'_c = 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].
- **5.3** The values of f'_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) except as noted in Sections 4.2.2 and 4.2.4 of this report.
- 5.4 Anchors and post-installed reinforcing bars must be installed in concrete base materials in holes predrilled in accordance with the instructions in Figure 8.
- 5.5 Loads applied to the anchors must be adjusted in accordance with Section 1605.2 of the IBC for strength design.
- 5.6 Hilti HIT-RE 500-SD adhesive anchors and postinstalled reinforcing bars are recognized for use to resist short- and long-term loads, including wind and earthquake, subject to the conditions of this report.
- 5.7 In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report, and post-installed reinforcing bars must comply with section 4.2.4 of this report.
- 5.8 Hilti HIT-RE 500-SD adhesive anchors and postinstalled reinforcing bars are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchor, subject to the conditions of this report.
- 5.9 Anchor strength design values are established in accordance with Section 4.1 of this report.
- 5.10 Post-installed reinforcing bar development and splice length is established in accordance with Section 4.2 of this report.
- 5.11 Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values described in this report.
- 5.12 Post-installed reinforcing bar spacing, minimum member thickness, and cover distance must be in accordance with the provisions of ACI 318 for cast-in place bars and section 4.2.3 of this report
- 5.13 Prior to installation, calculations and details demonstrating compliance with this report must be submitted to the building official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- 5.14 Anchors and post-installed reinforcing bars are not permitted to support fire-resistive construction. Where

not otherwise prohibited in the code, HIT-RE 500-SD adhesive anchors and post-installed reinforcing bars are permitted for installation in fireresistive construction provided that at least one of the following conditions is fulfilled:

- · Anchors and post-installed reinforcing bars are used to resist wind or seismic forces only.
- · Anchors and post-installed reinforcing bars that support gravity load-bearing structural elements are within a fire-resistive envelope or a fireresistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
- Anchors and post-installed reinforcing bars are used to support nonstructural elements.
- 5.15 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors and post-installed reinforcing bars subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- 5.16 Use of zinc-plated carbon steel anchors is limited to dry, interior locations.
- 5.17 Steel anchoring materials in contact with preservativetreated and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.
- 5.18 Periodic special inspection must be provided in accordance with Section 4.3 of this report. Continuous special inspection for anchors and post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.3 of this report.


- 5.19 Installation of anchors and post-installed reinforcing bars in horizontal or upwardly inclined orientations to resist sustained tension loads must be performed by personnel certified by an applicable certification program in accordance with ACI 318-14 17.8.2.2 or 17.8.2.3, or ACI 318-11 D.9.2.2 or D.9.2.3.
- 5.20 Hilti HIT-RE 500-SD adhesives are manufactured by Hilti GmbH, Kaufering, Germany, under a qualitycontrol program with inspections by ICC-ES.
- 5.21 Hilti HIS-N and HIS-RN inserts are manufactured by Hilti (China) Ltd., Guangdong, China, under a qualitycontrol program with inspections by ICC-ES.


6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors in Concrete (AC308), dated January 2016, including Table 3.2 which incorporates requirements in ACI 355.4-11, and Table 3.8 for evaluating post-installed reinforcing bars; and quality control documentation.

7.0 IDENTIFICATION

- 7.1 Hilti HIT-RE 500-SD adhesive is identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, anchor name, and evaluation report number (ESR-2322).
- 7.2 HIS-N and HIS-RN inserts are identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, anchor name, and evaluation report number (ESR-2322).
- 7.3 Threaded rods, nuts, washers, bolts, cap screws, and deformed reinforcing bars are standard elements and must conform to applicable national or international specifications.

THREADED ROD/REINFORCING BAR

HIS AND HIS-R INSERTS

FIGURE 1—INSTALLATION PARAMETERS FOR POST-INSTALLED ADHESIVE ANCHORS

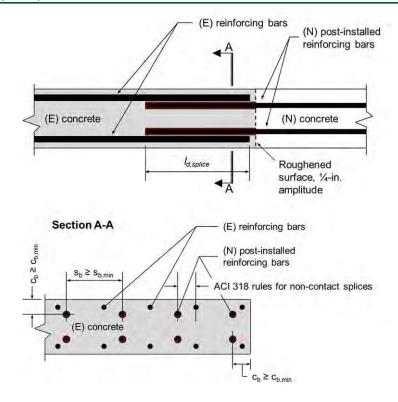


FIGURE 2—INSTALLATION PARAMATERS FOR POST-INSTALLED REINFORCING BARS

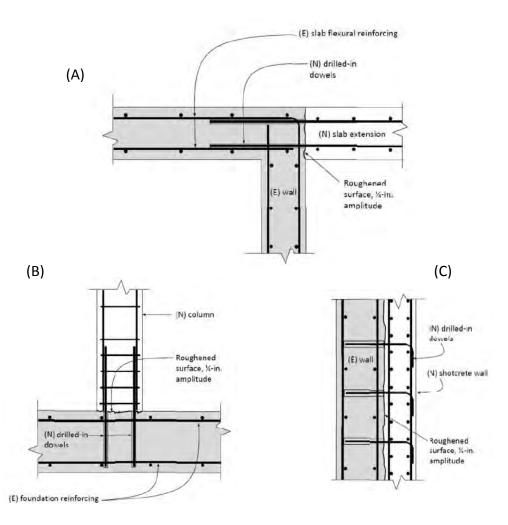


FIGURE 3—APPLICATION EXAMPLES FOR POST-INSTALLED REINFORCING BARS:

(A) TENSION LAP SPLICE WITH EXISTING FLEXURAL REINFORCEMENT; (B) TENSION DEVELOPMENT OF COLUMN DOWELS; (C) DEVELOPMENT OF SHEAR DOWELS FOR NEWLY THICKENED SHEAR WALL

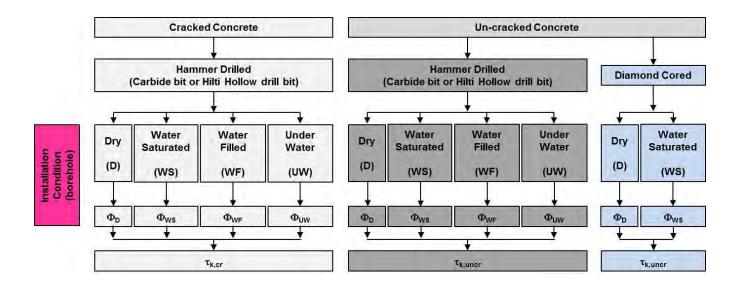


FIGURE 4—FLOW CHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH FOR POST-INSTALLED ADHESIVE ANCHORS

TABLE 1—DESIGN TABLE INDEX

Design stren	Design strength ¹		Threaded rod		Hilti HIS internally threaded insert		Deformed reinforcement			
		fractional		metric	fractional	metric	fractional	metric	Canadian	
Steel	N _{sa} , V _{sa}		Table 7	Table 11	Table 15	Table 19	Table 23	Table 27	Table 31	
Concrete	N_{pn} , N_{sb} , N_{sbg} , N_{cb} , N_{cbg} , V_{cb} , V_{cpg} , V_{cp} , V_{cpg}		Table 8	Table 12	Table 16	Table 20	Table 24	Table 28	Table 32	
Bond ²	Na, Nag	hammer-drilled holes	Table 9	Table 13	Table 17	Table 21	Table 25	Table 29	Table 33	
BOILU	IV _a , IV _{ag}	diamond cored holes	Table 10	Table 14	Table 18	Table 22	Table 26	Table 30	Table 34	
Determination of development length for post-installed reinforcing bar connections		-	-	-	-	Table 35	Table 36	Table 37		

 $^{^1\}mathrm{Ref.}$ ACI 318-14 17.3.1.1 or ACI 318-11 D.4.1.1, as applicable. $^2\mathrm{See}$ Section 4.1 of this evaluation report.

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON STEEL THREADED ROD MATERIALS1

THREADED ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, f _{ya}	f _{uta} /f _{ya}	Elongation, min. percent⁵	Reduction of Area, min. percent	Specification for nuts ⁶	
ASTM A193 ² Grade B7	psi	125,000	105,000	1.19 16		50	ASTM A194	
$\leq 2^{1}/_{2}$ in. (≤ 64 mm)	(MPa)	(862)	(724)	1.19	10	30	A31101 A 194	
ASTM F568M3 Class 5.8	MPa	500	400				DIN 934 (8-A2K)	
M5 (¹ / ₄ in.) to M24 (1 in.) (equivalent to ISO 898-1)	(psi)	(72,500)	(58,000)	1.25	10	35	ASTM A563 Grade DH ⁷	
ISO 898-1 ⁴ Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22	-	DIN 934 (8-A2K)	
ISO 898-1 ⁴ Class 8.8	MPa	800	640	1.05	10	F0	DIN 034 (9 A3K)	
130 090-1 Class 8.8	(psi)	(116,000)	(92,800)	1.25	12	52	DIN 934 (8-A2K)	

¹Hilti HIT-RE 500-SD must be used with continuously threaded carbon steel rod (all-thread) have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STAINLESS STEEL THREADED ROD MATERIALS1

THREADED ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, f_{ya}	f _{uta} /f _{ya}	Elongation, min. percent	Reduction of Area, min. percent	Specification for nuts ⁴	
ASTM F593 ² CW1 (316)	psi	100,000	65,000	1.54	20		ASTM F594	
¹ / ₄ to ⁵ / ₈ in.	(MPa)	(689)	(448)	Alloy group 1, 2 or 3				
ASTM F593 ² CW2 (316)	psi	85,000	45,000	1,89	25		ASTM F594	
$^{3}/_{4}$ to $1^{1}/_{2}$ in.	(MPa)	(586)	(310)	1,09	23	-	Alloy group 1, 2, or 3	
ISO 3506-1 ³ A4-70	MPa	700	450	1.56	40		ISO 4032	
M8 – M24	(psi)	(101,500)	(65,250)	1.50	40	-	130 4032	
ISO 3506-1 ³ A4-50	MPa	500	210	2.00	40		150 4022	
M27 – M30	(psi)	(72,500)	(30,450)	2.00	40	-	ISO 4032	

¹Hilti HIT-RE 500-SD must be used with continuously threaded stainless steel rod (all-thread) that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here. ²Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.

²Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service.

³Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners.

⁴Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs

⁵Based on 2-in. (50 mm) gauge length except for A 193, which are based on a gauge length of 4d and ISO 898, which is based on 5d.

⁶Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

⁷Nuts for fractional rods.

³Mechanical properties of corrosion-resistant stainless steel fasteners – Part 1: Bolts, screws and studs.

⁴Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

TABLE 4—SPECIFICATIONS AND PHYSICAL PROPERTIES OF U.S. CUSTOMARY UNIT AND METRIC HIS-N AND HIS-RN INSERTS

HILTI HIS-N AND HIS-RN INSERTS		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength, f _{ya}		
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN	MPa	490	410		
1561 9SMnPb28K 3/8 and M8 to M10	(psi)	(71,050)	(59,450)		
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN	MPa	460	375		
1561 9SMnPb28K 1/2 to 3/4 and M12 to M20	(psi)	(66,700)	(54,375)		
Stainless Steel	MPa	700	350		
EN 10088-3 X5CrNiMo 17-12-2	(psi)	(101,500)	(50,750)		

TABLE 5—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON BOLTS, CAP SCREWS AND STUDS FOR USE WITH HIS-N AND HIS-RN INSERTS^{1,2}

BOLT, CAP SCREW OR STUD SPECIFICATION		Minimum specified ultimate strength f _{uta}	Minimum specified yield strength 0.2 percent offset f_{ya}	f _{uta} /f _{ya}	Elongation, min.	Reduction of Area, min.	Specification for nuts ⁶	
SAE J429 ³ Grade 5	psi	120,000	92,000	1.30	14	35	SAE J995	
SAE J429 Glade 5	(MPa)	(828)	(634)	1.30	14	33	SAE 1995	
ASTM A325 ⁴ 1/ ₂ to 1-in.	psi	120,000	92,000	1.30	14	35	A563 C, C3, D, DH,	
ASTIVI A325 /2 to 1-III.	(MPa)	(828)	(634)	1.30	14	35	DH3 Heavy Hex	
ASTM A193 ⁵ Grade B8M	psi	110,000	95,000	1.16	15	45	ASTM F594 ⁷	
(AISI 316) for use with HIS-RN	(MPa)	(759)	(655)	1.10	15	45	Alloy Group 1, 2 or 3	
ASTM A193 ⁵ Grade B8T	psi	125,000	100,000	1.25	12	35	ASTM F594 ⁷	
(AISI 321) for use with HIS-RN	(MPa)	(862)	(690)	1.25	12	J5	Alloy Group 1, 2 or 3	

TABLE 6—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING BAR SPECIFICATION	N	Minimum specified ultimate strength, f_{uta}	Minimum specified yield strength, f_{ya}	
ASTM A615 ¹ Gr. 60	psi	90,000	60,000	
ASTIM ACTS GI. 60	(MPa)	(620)	(414)	
ASTM A615 ¹ Gr. 40	psi	60,000	40,000	
ASTM ACTS CI. 40	(MPa)	(414)	(276)	
DIN 488 ² BSt 500	MPa	550	500	
DIN 400 BSI 300	(psi)	(79,750)	(72,500)	
CAN/CSA-G30.18 ³ Gr. 400	MPa	540	400	
CAIV.CSA-G30.18 Gr. 400	(psi)	(78,300)	(58,000)	

Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement.

¹Minimum Grade 5 bolts, cap screws or studs must be used with carbon steel HIS inserts.
²Only stainless steel bolts, cap screws or studs must be used with HIS-RN inserts.
³Mechanical and Material Requirements for Externally Threaded Fasteners.
⁴Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength.

⁵Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service.

⁶Nuts must have specified minimum proof load stress equal to or greater than the specified minimum full-size tensile strength of the specified stud.

⁷ Nuts for stainless steel studs must be of the same alloy group as the specified bolt, cap screw, or stud.

²Reinforcing steel; reinforcing steel bars; dimensions and masses.

³Billet-Steel Bars for Concrete Reinforcement.

TABLE 7—STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD1

						Nomin	al rod diame	ter (in.)				
DE	SIGN INFORMATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	3/4	⁷ / ₈	1	1 ¹ / ₄		
			in.	0.375	0.5	0.625	0.75	0.875	1	1.25		
Rod	O.D.	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)		
Rod	effective cross-sectional	_	in. ²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691		
		A _{se}	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)		
			lb	5,620	10,290	16,385	24,250	33,470	43,910	70,260		
	Nominal strength as	N _{sa}	(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)		
.82	governed by steel strength	.,	lb	3,370	6,175	9,830	14,550	20,085	26,345	42,155		
ass 5		V _{sa}	(kN)	(15)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)		
38-1 Cla	Reduction for seismic shear	$lpha_{ extsf{V}, extsf{seis}}$	-	1.00								
ISO 86	Strength reduction factor ϕ for tension ²	φ	-				0.65					
	Strength reduction factor ϕ for shear ²	φ	-		0.60							
		.,	lb	9,685	17,735	28,250	41,810	57,710	75,710	121,135		
	Nominal strength as governed by steel	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)		
	strength	V _{sa}	lb	5,810	10,640	16,950	25,085	34,625	45,425	72,680		
3 B7 ²			(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)		
M A 193	Reduction for seismic shear	$lpha_{V,seis}$	-				1.00					
ASTI	Strength reduction factor ϕ for tension ²	φ	1				0.75					
ISO 898-1 Class 5.8 ²	Strength reduction factor ϕ for shear ²	φ	-				0.65					
		Λ/	lb	7,750	14,190	22,600	28,430	39,245	51,485	82,370		
3S ²	Nominal strength as governed by steel	N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	(366.4)		
inle	strength	V _{sa}	lb	4.650	8,515	13,560	17,060	23,545	30,890	49,425		
		- 3a	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	(219.8)		
93, CW	Reduction for seismic shear	$lpha_{V, seis}$	-					0.80				
TM F5	Strength reduction factor ϕ for tension ²	φ	-				0.65	0.65				
AS	Strength reduction factor ϕ for shear ²	φ	-				0.60					

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. D-2 and Eq. D-29, as applicable. Nuts and washers must be appropriate for the rod.

2For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3,

as applicable.

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD1

DEGION INFORMATION	0	1114			Nomin	al rod diame	eter (in.)					
eracked concrete Effectiveness factor for	Symbol	Units	³ / ₈	1/2	⁵ / ₈	3/4	⁷ / ₈	1	1 ¹ / ₄			
Effectiveness factor for	1.	in-lb				17						
cracked concrete	k _{c,cr}	(SI)	(7.1)									
Effectiveness factor for	le.	in-lb				24						
uncracked concrete	K _{c,uncr}	(SI)		(10)								
Min. anabar anasing ³		in.	1 ⁷ / ₈	2 ¹ / ₂	3 ¹ / ₈	3 ³ / ₄	4 ³ / ₈	5	6 ¹ / ₄			
wiii. anchor spacing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(159)			
Min adaa distansa ³		in.	1 ⁷ / ₈	2 ¹ / ₂	3 ¹ / ₈	3 ³ / ₄	4 ³ / ₈	5	6 ¹ / ₄			
win. eage distance	C _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(159)			
Minimum member thickness	4	in.	h _{ef} -	+ 1 ¹ / ₄	h _{ef} + 2d ₀							
Minimum member thickness	h _{min}	(mm)	(h _{ef}	+ 30)								
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-			See Sect	ion 4.1.10 of	this report.					
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-		0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-		0.70								

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8, installation instructions. ²Values provided for post-installed anchors under Condition B without supplementary reinforcement as defined in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. ³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1.4

							Nominal	rod diam	eter (in.)		
DE	SIGN INFORMA	ATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄	⁷ / ₈	1	1 ¹ / ₄
N die	aimum Embadm	ont	b	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	5
IVIII	nimum Embedm	eni	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
Ма	ximum Embedm	nent	h _{ef,max}	in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	25
				(mm) Psi	(191)	(254) 1,570	(318)	(381)	(445)	(508)	(635)
	- .	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	1,590 (11.0)	(10.8)	1,505 (10.4)	1,455 (10.0)	1,405 (9.7)	1,365 (9.4)	1,310 (9.0)
	Temperature range A ³			Psi	770	740	740	700	645	600	510
je je	Ü	Characteristic bond strength in cracked concrete ²	$ au_{k,cr}$	(MPa)	(5.3)	(5.1)	(5.1)	(4.8)	(4.4)	(4.1)	(3.5)
Concrete		Characteristic bond strength		Psi	865	850	815	790	765	740	710
ပိ	Temperature	in uncracked concrete ²	T _{k,uncr}	(MPa)	(6.0)	(5.9)	(5.6)	(5.4)	(5.3)	(5.1)	(4.9)
Dry	range B ³	Characteristic bond strength in cracked concrete ²	$ au_{k,cr}$	Psi (MPa)	420 (2.9)	405 (2.8)	390 (2.7)	380 (2.6)	350 (2.4)	325 (2.2)	275 (1.9)
	Anchor Catego	ry, dry concrete	-	-	1	1	1	1	2	2	2
	Strength Reduc	ction factor	ϕ_{d}	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55
		Characteristic bond strength	71	Psi	1,590	1,570	1,505	1,455	1,405	1,355	1,230
ete	Temperature	in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(11.0)	(10.8)	(10.4)	(10.0)	(9.7)	(9.3)	(8.5)
ncre	range A ³	Characteristic bond strength	_	Psi	770	740	740	700	645	595	475
S		in cracked concrete ²	T _{k,cr}	(MPa)	(5.3)	(5.1)	(5.1)	(4.8)	(4.4)	(4.1)	(3.3)
Saturated Concrete	Tomporatura	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	Psi (MPa)	865 (6.0)	850 (5.9)	815 (5.6)	790 (5.4)	765 (5.3)	735 (5.1)	665
satur	Temperature range B ³	Characteristic bond strength	·	Psi	420	405	390	380	350	315	(4.6) 260
Water S	· ·	in cracked concrete ²	$ au_{k,cr}$	(MPa)	(2.9)	(2.8)	(2.7)	(2.6)	(2.4)	(2.2)	(1.8)
Wa	Anchor Catego	ı	-	2	2	3	3	3	3	3	
	Strength Reduc	ction factor	ϕ_{ws}	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45
		Characteristic bond strength	<i>T</i> 1	Psi	1,590	1,570	1,445	1,325	1,220	1,145	1,035
<u>e</u>	Temperature	in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(11.0)	(10.8)	(10.0)	(9.1)	(8.4)	(7.9)	(7.1)
Jcre	range A ³	Characteristic bond strength	$ au_{k,cr}$	Psi	770	740	710	635	555	500	400
Ō.		in cracked concrete ²	PR,CI	(MPa)	(5.3)	(5.1)	(4.9)	(4.4)	(3.8)	(3.4)	(2.8)
ater-filled hole Concrete	Temperature	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	Psi (MPa)	865 (6.0)	850 (5.9)	780 (5.4)	715 (4.9)	665 (4.6)	620 (4.3)	560 (3.9)
er-fille	range B ³	Characteristic bond strength in cracked concrete ²	$ au_{k,cr}$	Psi (MPa)	420 (2.9)	405 (2.8)	375 (2.6)	345 (2.4)	300 (2.1)	270 (1.8)	215 (1.5)
Wat	Anchor Catego	ry, water filled hole	_	(IVII a)	3	3	3	3	3	3	3
	Strength Reduc				0.45	0.45	0.45	0.45	0.45	0.45	0.45
	ouengui Neau		$\phi_{ m wf}$	- Psi	1,510	1,475	1,415	1,355	1,290	1,255	1,190
	Temperature	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(10.5)	(10.2)	(9.8)	(9.3)	(8.9)	(8.6)	(8.2)
ation	range A ³	Characteristic bond strength		Psi	730	695	695	650	585	545	460
plic		in cracked concrete ²	$ au_{k,cr}$	(MPa)	(5.0)	(4.8)	(4.8)	(4.5)	(4.0)	(3.8)	(3.2)
ter ap	Temperature	Characteristic bond strength in uncracked concrete ²	T _{k,uncr}	Psi (MPa)	820 (5.7)	800 (5.5)	765 (5.3)	735 (5.0)	705 (4.9)	680 (4.7)	645 (4.5)
Underwater application	range B ³	Characteristic bond strength in cracked concrete ²	$ au_{k,cr}$	Psi (MPa)	400 (2.8)	380 (2.6)	370 (2.5)	355 (2.4)	320 (2.2)	300 (2.0)	250 (1.7)
S	Anchor Catego	ry, underwater application	-	-	3	3	3	3	3	3	3
	Strength Reduc	ction factor	ϕ_{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.For lb-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_c / 2,500)^{0.1} [For SI: (f_c / 17.2)^{0.1}]. See Section 4.1.4 of this report for bond strength determination.

² Bond strength values are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent.

³ Temperature range A: Maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴For structures assigned to Seismic Design Categories C, D, E or F, $\alpha_{N,seis}$ = 1.00.

TABLE 10—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A CORE DRILL

DE	SIGN INFORM	ATION	Cumbal				Nominal	rod diame	eter (in.)		
			Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄	⁷ / ₈	1	1 ¹ / ₄
		Characteristic bond strength	$ au_{k,uncr}$	Psi	1,225	1,195	1,090	1,010	955	900	820
		in uncracked concrete ²	CK,UTICT	(MPa)	(8.4)	(8.2)	(7.5)	(7.0)	(6.6)	(6.2)	(5.7)
	Temperature	Minimum Embedment	h _{ef,min}	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	$3^{1}/_{2}$	3 ¹ / ₂	4	5
	range A ³			(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
rete		Maximum Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (636)
Concrete		Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	Psi (MPa)	665 (4.6)	650 (4.5)	590 (4.1)	550 (3.8)	515 (3.6)	490 (3.4)	N/A
Dry	Temperature range B ³	Minimum Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)
		Maximum Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (636)
	Anchor Catego	Category, dry concrete		-	1	1	2	2	2	3	3
	Strength Redu	ction factor	ϕ_{d}	-	0.65	0.65	0.55	0.55	0.55	0.45	0.45
		Characteristic bond strength	_	Psi	1,225	1,195	1,090	1,010	955	855	725
		in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(8.4)	(8.2)	(7.5)	(7.0)	(6.6)	(5.9)	(5.0)
ete	Temperature range A ³	Minimum Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)
d Concrete		Maximum Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (636)
Saturated		Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	Psi (MPa)	665 (4.6)	650 (4.5)	590 (4.1)	550 (3.8)	515 (3.6)	N/A	N/A
Water Sa	Temperature range B ³	Minimum Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)
We		Maximum Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (636)
	Anchor Catego	ory, water saturated concrete	-	-	2	2	3	3	3	3	3
	Strength Redu	ction factor	φws	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads such as wind and

^{*}Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads such as wind and seismic, bond strengths may be increased 40 percent.

*Temperature range A: Maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

*Bond strength values applicable to Seismic Design Categories A and B only.

TABLE 11—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD1

						No	minal rod o	diameter (m	ım)				
DES	SIGN INFORMATION	Symbol	Units	8	10	12	16	20	24	27	30		
-	1 Outside Diseasets	-1	mm	8	10	12	16	20	24	27	30		
Roo	Outside Diameter	d	(in.)	(0.31)	(0.39)	(0.47)	(0.63)	(0.79)	(0.94)	(1.06)	(1.18)		
Rod	l effective cross-sectional	4	mm ²	36.6	58	84.3	157	245	353	459	561		
area	a	A _{se}	(in. ²)	(0.057)	(0.090)	(0.131)	(0.243)	(0.380)	(0.547)	(0.711)	(0.870)		
		Λ/	kN	18.5	29.0	42.0	78.5	122.5	176.5	229.5	280.5		
	Nominal strength as governed by steel	N _{sa}	(lb)	(4,114)	(6,519)	(9,476)	(17,647)	(27,539)	(39,679)	(51,594)	(63,059)		
5.8	strength	V	kN	11.0	14.5	25.5	47.0	73.5	106.0	137.5	168.5		
		V _{sa}	(lb)	(2,480)	(3,260)	(5,685)	(10,588)	(16,523)	(23,807)	(30,956)	(37,835)		
SO 898-1 Class	Reduction for seismic shear	$lpha_{V,seis}$	-		1.00								
ISO 8	Strength reduction factor ϕ for tension ²	φ	-				0.	65					
	Strength reduction factor ϕ for shear ²	φ	-				0.	60					
		.,	kN	29.5	46.5	67.5	125.5	196.0	282.5	367.0	449.0		
	Nominal strength as	N _{sa}	(lb)	(6,582)	(10,431)	(15,161)	(28,236)	(44,063)	(63,486)	(82,550)	(100,89		
8.	governed by steel strength	V	kN	17.6	23.0	40.5	75.5	117.5	169.5	220.5	269.5		
ss 8.		V _{sa}	(lb)	(3,949)	(5,216)	(9,097)	(16,942)	(26,438)	(38,092)	(49,530)	(60,537)		
SO 898-1 Class	Reduction for seismic shear	$lpha_{V, seis}$	-		1.00								
ISO 86	Strength reduction factor ϕ for tension ²	φ	-				0.	65					
	Strength reduction factor ϕ for shear ²	φ	-				0.	60					
		.,	kN	25.6	40.6	59.0	109.9	171.5	247.1	229.5	280.5		
Stainless ³	Nominal strength as	N _{sa}	(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)	(55,550)	(51,594)	(63,059)		
tainl	governed by steel strength	kN	15.4	20.3	35.4	65.9	102.9	148.3	137.7	168.3			
\4 S	N Suelidii			(3,456)	(4,564)	(7,960)	(14,824)	(23,133)	(33,330)	(30,956)	(37,835)		
Reduction for seismic shear $\alpha_{V,seis}$ -				0.80									
Reduction for seismic shear $\alpha_{V,seis}$ - Strength reduction factor ϕ for tension ϕ - Strength reduction factor ϕ - Strength reduction factor ϕ -				0.65									
							0.	60					

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. D-2 and Eq. D-29, as applicable. Nuts and washers must be appropriate for the rod.

²For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318 D.4.3, as applicable.

³ A4-70 Stainless (M8- M24); A4-502 Stainless (M27- M30)

TABLE 12—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT

DEGION INFORMATION	0hl	1114			No	minal rod	diameter (m	ım)			
DESIGN INFORMATION	Symbol	Units	8	10	12	16	20	24	27	30	
Effectiveness factor for	1.	SI				7	.1				
cracked concrete	k _{c,cr}	(in-lb)				(1	7)				
Effectiveness factor for	1.	SI				1	0				
uncracked concrete	K _{c,uncr}	(in-lb)		(24)							
Min. anchor spacing ³		mm	40	50	60	80	100	120	135	150	
win. anchor spacing	S _{min}	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9)	(4.7)	(5.3)	(5.9)	
Min. edge distance ³		mm	40	50	60	80	100	120	135	150	
win. edge distance	C _{min}	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9)	(4.7)	(5.3)	(5.9)	
Minimum member thickness	h	mm	h _{ef} -	+ 30			b	+ 2d _o			
Willimum member unckness	h _{min}	(in.)	(h _{ef} +	- 1 ¹ / ₄)			II _{ef} ¬	- 2u ₀			
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-			See	Section 4.1	.10 of this re	eport.			
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-	0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-	0.70								

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Additional setting information is described in Figure 8, installation instructions.
 Values provided for post-installed anchors installed under Condition B without supplementary reinforcement.
 For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 13—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT.4

	SIGN INFORMA	TION	Cumbal	Units				Nominal i	rod diame	ter (mm)		
DE	SIGN INFORMA	ATION	Symbol	Units	8	10	12	16	20	24	27	30
N Air	nimum Embedm	ont	h	mm	60	60	70	80	90	96	108	120
IVIII	nimum Embeam	ent	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
	vision como Espain a altra			mm	160	200	240	320	400	480	540	600
IVIć	ximum Embedm	ent	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
		Characteristic bond		MPa	11.0	11.0	11.0	10.4	9.9	9.6	9.3	9.1
	Temperature	strength in uncracked concrete ²	$ au_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1505)	(1435)	(1385)	(1355)	(1320)
	range A ³	Characteristic bond		MPa	5.3	5.3	5.3	5.1	4.7	4.2	4.0	3.7
a)	J	strength in cracked	$ au_{k,cr}$						(680)		(580)	
Dry Concrete		concrete ² Characteristic bond		(psi)	(770)	(770)	(770)	(740)	,	(610)	, ,	(535)
ouc		strength in	$ au_{k,uncr}$	MPa	6.0	6.0	6.0	5.6	5.4	5.2	5.1	4.9
S C	Temperature	uncracked concrete ²	11,41101	(psi)	(865)	(865)	(865)	(815)	(775)	(750)	(735)	(715)
٥	range B ³	Characteristic bond		MPa	2.9	2.9	2.9	2.7	2.6	2.3	2.2	2.0
		strength in cracked concrete ²	$ au_{k,cr}$	(psi)	(420)	(420)	(420)	(390)	(375)	(335)	(320)	(290)
	Anchor Catego	ry, dry concrete	_	-	1	1	1	1	1	2	2	2
	Strength Reduc	<u>, , , , , , , , , , , , , , , , , , , </u>	φ _d	_	0.65	0.65	0.65	0.65	0.65	0.55	0.55	0.55
	ou ongui i todat	Characteristic bond	Ψα	MPa	11.0	11.0	11.0	10.4	9.9	9.6	9.1	8.6
		strength in	$ au_{k,uncr}$								-	
ete	Temperature range A ³	uncracked concrete ²		(psi)	(1590)	(1590)	(1590)	(1505)	(1435)	(1385)	(1320)	(1255)
ncı	range A	Characteristic bond strength in cracked	$ au_{k,cr}$	MPa	5.3	5.3	5.3	5.1	4.7	4.2	3.9	3.5
ŏ		concrete ²	VK,CI	(psi)	(770)	(770)	(770)	(740)	(685)	(615)	(570)	(510)
ated		Characteristic bond		MPa	6.0	6.0	6.0	5.6	5.4	5.2	5.0	4.7
tura	Temperature	strength in uncracked concrete ²	$ au_{k,uncr}$	(psi)	(865)	(865)	(865)	(815)	(775)	(750)	(720)	(680)
Water Saturated Concrete	range B ³	Characteristic bond		MDa	2.0	2.0	2.0	0.7	2.0	2.3	0.4	4.0
ater		strength in cracked	$ au_{k,cr}$	MPa (psi)	2.9 (415)	2.9 (415)	2.9 (415)	2.7 (400)	2.6 (370)	(335)	2.1 (310)	1.9 (280)
Š	Ancher Cotogo	concrete ² ry, water sat. concrete		-	2	2	2	3	3	3	3	3
	Strength Reduc	rtion factor	φ _{ws}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45
	on ongan reduct	Characteristic bond	ψws	MPa	11.0	11.0	11.0	10.0	8.9	8.2	7.8	7.4
		strength in	$ au_{k,uncr}$									
rete	Temperature range A ³	uncracked concrete ² Characteristic bond		(psi)	(1590)	(1590)	(1590)	(1445)	(1290)	(1190)	(1125)	(1070)
ouc	range A	strength in cracked	$ au_{k,cr}$	MPa	5.3	5.3	5.3	4.9	4.2	3.7	3.3	3.0
Ö		concrete ²	,	(psi)	(770)	(770)	(770)	(710)	(615)	(530)	(485)	(440)
hole		Characteristic bond strength in	_	MPa	6.0	6.0	6.0	5.4	4.8	4.5	4.2	4.0
ed	Temperature	uncracked concrete ²	$ au_{k,uncr}$	(psi)	(865)	(865)	(865)	(785)	(700)	(650)	(615)	(575)
Water-filled hole Concrete	range B ³	Characteristic bond		MPa	2.9	2.9	2.9	2.6	2.3	2.0	1.8	1.6
ate		strength in cracked	$ au_{k,cr}$	(psi)	(420)	(420)	(420)	(375)	(335)	(285)	(265)	(235)
>	Anchor Catego	concrete ² ry, water filled hole	_	_	3	3	3	3	3	3	3	3
	Strength Reduc		ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
		Characteristic bond	ΨWI	MPa	10.4	10.4	10.4	9.8	9.2	8.8	8.6	8.3
	Taman c == t : : :	strength in	$ au_{k,uncr}$	(psi)	(1510)	(1510)	(1510)	(1415)	(1330)	(1275)	(1245)	(1200)
иc	Temperature range A ³	uncracked concrete ² Characteristic bond		,	` /	,	,	` ,	, ,	,		
Sati	iango / t	strength in cracked	$ au_{k,cr}$	MPa (psi)	5.0 (730)	5.0 (730)	5.0 (730)	4.8 (695)	4.4 (635)	3.9 (565)	3.7 (540)	3.4 (490)
plik		concrete ²		(bai)	(730)	(130)	(730)	(033)	(033)	(303)	(3+0)	(430)
rақ		Characteristic bond strength in		MPa	5.7	5.7	5.7	5.3	5.0	4.8	4.7	4.5
ate	Temperature	uncracked concrete ²	$ au_{k,uncr}$	(psi)	(820)	(820)	(820)	(770)	(725)	(690)	(675)	(650)
Underwater application	range B ³	Characteristic bond		MPa	2.8	2.8	2.8	2.5	2.4	2.1	2.0	1.8
Jnd		strength in cracked	$ au_{k,cr}$	(psi)	(400)	(400)	(400)	(370)	(345)	(310)	(290)	(265)
	Anchor Catego	concrete ² ry, underwater app.	_	-	3	3	3	3	3	3	3	3
	Strength Reduc		φ _{uw}		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
ш	Oli Crigili Reduc	m 1 lbf = 4 440 N 1 noi = 0				w = 0.0202			lbf 1 MDa =	145 0 poi	5.40	0.70

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For lb-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

seismic, bond strengths may be increased 40 percent.

⁵Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature =110°F (43°C). Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴For structures assigned to Seismic Design Categories C, D, E or F, $\alpha_{N,seis}$ = 1.00.

TABLE 14—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A CORE DRILL^{1,4}

	TOLON INFORM	TION	0	1124			Nor	ninal rod di	ameter (m	ım)		
Di	SIGN INFORM	ATION	Symbol	Units	8	10	12	16	20	24	27	30
		Characteristic bond strength in	$ au_{k,uncr}$	MPa	8.4	8.4	8.4	7.5	6.8	6.3	6.1	5.8
		uncracked concrete	11,41101	(psi)	(1,225)	(1,225)	(1,225)	(1,090)	(990)	(920)	(880)	(840)
	Temperature	Minimum	h _{ef.min}	mm	60	60	70	80	90	96	108	120
	range A ³	embedment	61,111111	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
		Maximum	h _{ef.max}	mm	160	200	240	320	400	480	540	600
ete		embedment	r ei,max	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
Concrete		Characteristic bond strength in	_	MPa	4.6	4.6	4.6	4.1	3.7	3.4	3.3	N/A
ŭ		uncracked concrete ²	$ au_{k,uncr}$	(psi)	(665)	(665)	(665)	(590)	(535)	(495)	(480)	IN/A
Dry	Temperature	Minimum	h	mm	60	60	70	80	90	96	108	120
	range B ³	embedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
		Maximum	6	mm	160	200	240	320	400	480	540	600
		embedment	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
	Anchor Catego	ry, dry concrete	-	-	1	1	1	2	2	2	3	3
	Strength reduc	tion factor	ϕ_{d}	-	0.65	0.65	0.65	0.55	0.55	0.55	0.45	0.45
		Characteristic bond		MPa	8.4	8.4	8.4	7.5	6.8	6.1	5.7	5.2
		strength in uncracked concrete	$ au_{k,uncr}$	(psi)	(1,225)	(1,225)	(1,225)	(1,090)	(990)	(885)	(825)	(755)
	Temperature	Minimum	h	mm	60	60	70	80	90	96	108	120
ę	range A ³	embedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
Concrete		Maximum	h	mm	160	200	240	320	400	480	540	600
S		embedment	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
ted		Characteristic bond strength in	_	MPa	4.6	4.6	4.6	4.1	3.7	3.3	N/A	N/A
Water saturated		uncracked concrete ²	$ au_{k,uncr}$	(psi)	(665)	(665)	(665)	(595)	(535)	(480)	IN/A	IN/A
r sa	Temperature	Minimum	h _{ef.min}	mm	60	60	70	80	90	96	108	120
/ate	range B ³	embedment	l let,min	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
>		Maximum	h	mm	160	200	240	320	400	480	540	600
		embedment	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
	Anchor Catego	ry, water-sat. concrete	-	-	2	2	2	3	3	3	3	3
	Strength reduc	tion factor	ϕ_{d}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch $\equiv 25.4$ mm. 1 lbf = 4.448 N. 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be

increased 40 percent.
³Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4Bond strength values applicable to Seismic Design Categories A and B only.

TABLE 15—STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT HILTI HIS-N AND HIS-RN INSERTS¹

DE(NON INCORMATION	0	I I a l 4 a		Nominal bolt/cap s	crew diameter (in.)					
DE	SIGN INFORMATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄				
	in and O.D.	-,	in.	0.65	0.81	1	1.09				
HIS	insert O.D.	d	(mm)	(16.5)	(20.5)	(25.4)	(27.6)				
ше	insert length	ı	in.	4.33	4.92	6.69	8.07				
1113	insert length	,	mm)	(110)	(125)	(170)	(205)				
Bolt	effective cross-sectional	A_{se}	(mm)	0.0775	0.1419	0.2260	0.3345				
area	а	Ase	(mm ²)	(50)	(92)	(146)	(216)				
HIS	insert effective cross-	_	in. ²	0.178	0.243	0.404	0.410				
sect	tional area	A _{insert}	(mm ²)	(115)	(157)	(260)	(265)				
	Name in all atmosphere	Α.	lb	9,690	17,740	28,250	41,815				
	Nominal strength as governed by steel	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)				
	strength – ÁSTM A193 B7 ³ bolt/cap screw	17	lb	5,815	10,645	16,950	25,090				
	B7 bolt/cap screw	V _{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)				
B7	Nominal strength as		lb	12,650	16,195	26,925	27,360				
1 A195 E	governed by steel strength – HIS-N insert	N _{sa}	(kN)	(56.3)			(121.7)				
ASTM A193	Reduction for seismic shear	αv,seis	-	1.00							
	Strength reduction factor ϕ for tension ²	φ	-		0.	65					
	Strength reduction factor ϕ for shear ²	φ	-		0.	60					
	Nominal strength as	A.	lb	8,525	15,610	24,860	36,795				
	governed by steel	N _{sa}	(kN)	(37.9)	(69.4)	(110.6)	(163.7)				
SS	strength – ASTM A193 Grade B8M SS bolt/cap	V	lb	5,115	9,365	14,915	22,075				
3M (screw	V _{sa}	(kN)	(22.8)	(41.7)	(66.3)	(98.2)				
e B8	Nominal strength as governed by steel	N _{sa}	lb	17,165	23,430	38,955	39,535				
ərad	strength – HIS-RN insert	IV _{Sa}	(kN)	(76.3)	(104.2)	(173.3)	(175.9)				
2 E	Reduction for seismic shear	αv,seis	-		0.	0.80					
ASTM	Strength reduction factor ϕ for tension ²	φ	-	0.65							
	Strength reduction factor \$\phi\$ for tension^2 Strength reduction factor \$\phi\$ for shear^2	φ	-		0.	60					

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. D-2 and Eq. D-29, as applicable. Nuts and washers must be appropriate for the rod.

For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3,

as applicable. Values correspond to a brittle steel element for the HIS insert.

³For the calculation of the design steel strength in tension and shear for the bolt or screw, the φfactor for ductile steel failure according to ACI 318-14 17.3.3 or ACI 318-11 D4.3, as applicable, can be used.

TABLE 16—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT HILTI HIS-N AND HIS-RN INSERTS 1

				Nominal bolt/cap s	crew diameter (in.)							
DESIGN INFORMATION	Symbol	Units	3/8	1/2	⁵ / ₈	3/4						
	1.	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈						
Effective embedment depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)						
Effectiveness factor for	1.	in-lb		1	7							
cracked concrete	K _{c,cr}	(SI)		(7	.1)							
Effectiveness factor for	k	in-lb		24								
uncracked concrete	K _{c,uncr}	(SI)		(1	0)							
Min. anchor spacing ³		in.	31/4	4	5	5 ¹ / ₂						
Will. alichor spacing	S _{min}	(mm)	(83)	(102)	(127)	(140)						
Min. edge distance ³		in.	31/4	4	5	5 ¹ / ₂						
win. eage distance	C _{min}	(mm)	(83)	(102)	(127)	(140)						
Minimum member thickness	b	in.	5.9	6.7	9.1	10.6						
Minimum member unickness	h _{min}	(mm)	(150)	(170)	(230)	(270)						
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-		See Section 4.1.	.10 of this report.							
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-		0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-	0.70									

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

¹Additional setting information is described in Figure 8, installation instructions.

² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement.

³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 17—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1.4

	OLON INCORT	TION	0	1121	N	ominal bolt/cap	screw diameter	(in.)
DE	SIGN INFORMA	TION	Symbol	Units	³ / ₈	1/2	⁵ / ₈	3/4
			,	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈
Eff	ective embedmer	nt depth	$h_{ m ef}$	(mm)	(110)	(125)	(170)	(205)
				in.	0.65	0.81	1	1.09
HIS	S insert O.D.		d	(mm)	(16.5)	(20.5)	(25.4)	(27.6)
		Characteristic bond strength		psi	725	675	595	565
	Temperature	in cracked concrete	$ au_{k,cr}$	(MPa)	(5.0)	(4.6)	(4.1)	(3.9)
	range A ³	Characteristic bond strength		psi	1490	1425	1365	1340
ete		in uncracked concrete	$ au_{k,uncr}$	(MPa)	(10.3)	(9.8)	(9.4)	(9.2)
Concrete		Characteristic bond strength		psi	390	365	320	305
ς S	Temperature	in cracked concrete ²	T _{k,cr}	(MPa)	(2.7)	(2.5)	(2.2)	(2.1)
Dry	range B ³	Characteristic bond strength	π.	psi	810	775	740	725
		in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(5.6)	(5.3)	(5.1)	(5.0)
	Anchor Categor		-	-	11	1	2	2
	Strength reducti	on factor	ϕ_{d}	-	0.65	0.65	0.55	0.55
		Characteristic bond strength	$ au_{k,cr}$	psi	725	675	590	550
Water-Saturated Concrete	Temperature	in cracked concrete	-1,01	(MPa)	(5.0)	(4.6)	(4.1)	(3.8)
ouc	range A ³	Characteristic bond strength	<i>T</i> 1	psi	1490	1425	1355	1300
Öp		in uncracked concrete	$ au_{k,uncr}$	(MPa)	(10.3)	(9.8)	(9.3)	(9.0)
ate		Characteristic bond strength		psi	390	365	315	295
atur	Temperature	in cracked concrete ²	T _{k,cr}	(MPa)	(2.7)	(2.5)	(2.2)	(2.0)
SK	range B ³	Characteristic bond strength	_	psi	810	775	735	705
Vate		in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(5.6)	(5.3)	(5.1)	(4.9)
>	Anchor Category, water-sat. concrete		-	-	3	3	3	3
	Strength reducti		<i>φ</i> ws	-	0.45	0.45	0.45	0.45
		Characteristic bond strength in cracked concrete	$ au_{k,cr}$	psi	690	600	500	465
rete	Temperature range A ³		,	(MPa)	(4.8)	(4.1)	(3.4)	(3.2)
Water-filled hole Concrete	range A	Characteristic bond strength	$ au_{k,uncr}$	psi	1415	1270	1150	1100
e C		in uncracked concrete	11,01101	(MPa)	(9.8)	(8.8)	(7.9)	(7.6)
Ь		Characteristic bond strength in cracked concrete ²	$ au_{k,cr}$	psi	370	325	270	250
lled	Temperature range B ³		,	(MPa)	(2.6)	(2.2)	(1.8)	(1.7)
ər-fi	range b	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	psi (MDa)	770 (5.3)	690	620	595 (4.1)
Vati	Anchor Catagor	y, water-filled hole	_	(MPa)	(5.3)	(4.7)	(4.3)	3
_	Strength reducti		- φ _{wf}	-	0.45	0.45	0.45	0.45
	Olicingui reducu	Characteristic bond strength	ψωτ	psi	675	625	545	520
	Temperature	in cracked concrete	$ au_{k,cr}$	(MPa)	(4.7)	(4.3)	(3.8)	(3.6)
on	range A ³	Characteristic bond strength		psi	1385	1325	1260	1235
Underwater application	Ŭ	in uncracked concrete	$ au_{k,uncr}$	(MPa)	(9.6)	(9.1)	(8.7)	(8.5)
ippli		Characteristic bond strength		psi	365	340	295	280
era	Temperature	in cracked concrete ²	$ au_{k,cr}$	(MPa)	(2.5)	(2.3)	(2.0)	(1.9)
wat	range B ³		+	psi	755	720	680	670
der	- 5	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	(MPa)				
٦ ا	Anobor Cotogo			` ,	(5.2)	(5.0)	(4.7)	(4.6)
	Anchor Category, underwater application		-	-	3	3	3	3

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and

seismic, bond strengths may be increased 40 percent.
³Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).
Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴For structures assigned to Seismic Design Categories C, D, E or F, $\alpha_{N,seis}$ = 1.00.

TABLE 18—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A CORE DRILL

חב	SICN INFORMA	TION	Cumbal	Units	N	ominal bolt/cap	screw diameter	(in.)
DE	SIGN INFORMA	HON	Symbol	Units	³ / ₈	1/2	⁵ / ₈	3/4
ш	S insert O.D.		4	in.	0.65	0.81	1	1.09
ПІ	S Insert O.D.		d	(mm)	(16.5)	(20.5)	(25.4)	(27.6)
		Characteristic bond strength	$ au_{k.uncr}$	psi	1080	985	900	870
	Temperature	in uncracked concrete	vk,uncr	(MPa)	(7.4)	(6.8)	(6.2)	(6.0)
	range A ³	Effective embedment depth	h _{ef}	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈
te		Lifective embedinent depth	Hef	(mm)	(110)	(125)	(170)	(205)
ncre		Characteristic bond strength		psi	580	535	495	NI/A
Concrete	range B ³	in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(4.0)	(3.7)	(3.4)	N/A
Dry	range B ³	Effective and advant double	4-	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈
		Effective embedment depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)
	Anchor Category, dry concrete		-	-	2	2	3	3
	Strength reducti	on factor	ϕ_{d}	-	0.55	0.55	0.45	0.45
		Characteristic bond strength		psi	1080	985	855	800
te	Temperature	in uncracked concrete	$ au_{k,uncr}$	(MPa)	(7.4)	(6.8)	(5.9)	(5.5)
Concrete	range A ³	Effective and advantation	-	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈
		Effective embedment depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)
ted		Characteristic bond strength		psi	580	535	N/A	NI/A
tura	Temperature	in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(4.0)	(3.7)	IN/A	N/A
-Sa	range B³	Effective embedment depth	h _{ef}	in.	4 ³ / ₈	5	63/4	8 ¹ / ₈
Water-Saturated		Lifective embedinent deptil	l lef	(mm)	(110)	(125)	(170)	(205)
Š	Anchor Categor	y, water-sat. concrete	-	-	3	3	3	3
	Strength reducti	on factor	$\phi_{ m ws}$	-	0.45	0.45	0.45	0.45

For **SI:** 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and

seismic, bond strengths may be increased 40 percent.

Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Bond strength values applicable to Seismic Design Categories A and B only.

TABLE 19—STEEL DESIGN INFORMATION FOR METRIC HILTI HIS-N AND HIS-RN INSERTS¹

55/	NON INFORMATION	0	Units		Nominal	bolt/cap screw d	iameter (mm)				
DE	SIGN INFORMATION	Symbol	Units	8	10	12	16	20			
1110	incert O.D.		mm	12.5	16.5	20.5	25.4	27.6			
піэ	insert O.D.	d	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)			
шс	insert length	1	mm	90	110	125	170	205			
1110	inscreterigui		(in.)	(3.54)	(4.33)	(4.92)	(6.69)	(8.07)			
	effective cross-sectional	A_{se}	mm ²	36.6	58	84.3	157	245			
area	a 	, ise	(in. ²)	(0.057)	(0.090)	(0.131)	(0.243)	(0.380)			
_	insert effective cross-	A _{insert}	mm ²	51.5	108	169.1	256.1	237.6			
sec	tional area	rinsert	(in.²)	(0.080)	(0.167)	(0.262)	(0.397)	(0.368)			
	Naminal atranath as	N _{sa}	kN	29.5	46.5	67.5	125.5	196.0			
	Nominal strength as governed by steel	7 Vsa	(lb)	(6,582)	(10,431)	(15,161)	(28,236)	(44,063)			
	strength – ISO 898-1 Class 8.8 bolt/cap screw	V_{sa}	kN	17.5	28.0	40.5	75.5	117.5			
80.	·	V _{Sa}	(lb)	(3,949)	(6,259)	(9,097)	(16,942)	(26,438)			
SS S	Nominal strength as	N/	kN	25.0	53.0	78.0	118.0	110.0			
Cls	governed by steel strength – HIS-N insert	N _{sa}	(lb)	(5,669)	(11,894)	(17,488)	(26,483)	(24,573)			
SO 898-1 Class 8.	Reduction for seismic shear	$lpha_{V, {\sf seis}}$	-		1.00						
<u>S</u>	Strength reduction factor ϕ for tension ²	φ	-			0.65					
	Strength reduction factor ϕ for shear ²	φ	-			0.60					
	Nominal strength as	N _{sa}	kN	25.5	40.5	59.0	110.0	171.5			
SS	governed by steel strength – ISO 3506-1	IV _{sa}	(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)			
inle	Class A4-70 Stainless	V_{sa}	kN	15.5	24.5	35.5	66.0	103.0			
Sta	bolt/cap screw	V sa	(lb)	(3,456)	(5,476)	(7,960)	(14,824)	(23,133)			
1-70	Nominal strength as governed by steel	N _{sa}	kN	36.0	75.5	118.5	179.5	166.5			
s A	strength – HIS-RN insert	7 Vsa	(lb)	(8,099)	(16,991)	(26,612)	(40,300)	(37,394)			
-1 Clas	Reduction for seismic shear	$lpha_{V,seis}$	-			0.80					
SO 3506-1 Class A4-70 Stainless	Strength reduction factor ϕ for tension ²	φ	-								
<u>S</u>	Strength reduction factor ϕ for shear ²	φ	-	0.60							

For **SI:** 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI

318 Eq. D-2 and Eq. D-29, as applicable. Nuts and washers must be appropriate for the rod.

For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. Values correspond to a brittle steel element.

TABLE 20—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC HILTI HIS-N AND HIS-RN INSERTS 1

DECICN INFORMATION		1114		Nominal b	oolt/cap screw dia	meter (in.)	
DESIGN INFORMATION	Symbol	Units	8	10	12	16	20
F	,	mm	90	110	125	170	205
Effective embedment depth	h _{ef}	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
Effectiveness factor for	1.	SI			7.1		
cracked concrete	K _{c,cr}	(in-lb)			(17)		
Effectiveness factor for	1.	SI			10		
uncracked concrete	K _{c,uncr}	(in-lb)			(24)		
Min. anchor spacing ³		mm	63	83	102	127	140
wiiri. arichor spacing	S _{min}	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)
Min. edge distance ³		mm	63	83	102	127	140
wiiri. euge distance	C _{min}	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)
Minimum member thickness	6	mm	120	150	170	230	270
winimum member thickness	h _{min}	(in.)	(4.7)	(5.9)	(6.7)	(9.1)	(10.6)
Critical edge distance – splitting (for uncracked concrete)	Cac	-		See Se	ection 4.1.10 of this	report.	
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-			0.65		
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-			0.70		

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8, installation instructions.

² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement.

³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 21—BOND STRENGTH DESIGN INFORMATION FOR METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1,4

						Nominal bol	t/cap screw c	liameter (in.)	
DE	SIGN INFORMA	TION	Symbol	Units	8	10	12	16	20
				mm	90	110	125	170	205
Eff	fective embedmer	nt depth	h _{ef}	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
				mm	12.5	16.5	20.5	25.5	27.5
HIS	S insert O.D.		d	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
		Characteristic bond strength		MPa	5.2	5.0	4.6	4.1	3.9
	Temperature	in cracked concrete	$ au_{k,cr}$	(psi)	(755)	(725)	(675)	(595)	(565)
	range A ³	Characteristic bond strength	7	MPa	10.9	10.3	9.8	9.4	9.2
Dry Concrete		in uncracked concrete	T _{k,uncr}	(psi)	(1,575)	(1,490)	(1,425)	(1,365)	(1,340)
ono		Characteristic bond strength in cracked concrete ²	T _{k,cr}	MPa	2.8	2.7	2.5	2.2	2.1
ry C	Temperature range B ³			(psi) MPa	(405) 5.9	(390) 5.6	(365) 5.3	(320) 5.1	(305)
Ω	range b	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	(psi)	(855)	(810)	(775)	(740)	(725)
	Anchor Categor		-	(psi) -	(655)	(810)	1	2	2
	Strength reducti	· · · · · · · · · · · · · · · · · · ·	φ _d	-	0.65	0.65	0.65	0.55	0.55
		Characteristic bond strength		MPa	5.2	5.0	4.6	4.1	3.8
ite	Temperature	in cracked concrete	$ au_{k,cr}$	(psi)	(755)	(725)	(665)	(590)	(550)
ncre	range A³	Characteristic bond strength		MPa	10.9	10.3	9.8	9.3	9.0
ပိ		in uncracked concrete	$ au_{k,uncr}$	(psi)	(1,575)	(1,490)	(1,425)	(1,355)	(1,300)
Water-Saturated Concrete		Characteristic bond strength		MPa	2.8	2.7	2.5	2.2	2.0
atur	Temperature	in cracked concrete ²	$ au_{k,cr}$	(psi)	(405)	(390)	(365)	(315)	(295)
SS	range B ³	Characteristic bond strength	<i>T</i> 1	MPa	5.9	5.6	5.3	5.1	4.9
Vate	Anahan Catanan	in uncracked concrete ²	$ au_{k,uncr}$	(psi)	(855)	(810)	(775)	(735)	(705)
_	Strength reducti	y, water-sat. concrete	- φ _{ws}	-	2 0.55	3 0.45	3 0.45	3 0.45	3 0.45
	ou ongui roudou	Characteristic bond strength	Ψws	MPa	5.2	4.8	4.1	3.4	3.2
te	Temperature	in cracked concrete	$ au_{k,cr}$	(psi)	(755)	(690)	(595)	(500)	(465)
cre	range A ³	Characteristic bond strength		MPa	10.9	9.8	8.8	7.9	7.6
Cor		in uncracked concrete	$ au_{k,uncr}$	(psi)	(1,575)	(1,415)	(1,270)	(1,150)	(1,100)
ole		Characteristic bond strength		MPa	2.8	2.6	2.2	1.8	1.7
ed r	Temperature	in cracked concrete ²	$ au_{k,cr}$	(psi)	(405)	(370)	(325)	(270)	(250)
r-fill	range B³	Characteristic bond strength	$ au_{k,uncr}$	MPa	5.9	5.3	4.7	4.3	4.1
Vater-filled hole Concrete	A l O - t	in uncracked concrete ²	VK, UTICI	(psi)	(855)	(770)	(690)	(620)	(595)
>	Strength reducti	y, water-filled hole	ϕ_{wf}	-	3 0.45	3 0.45	3 0.45	3 0.45	3 0.45
	Otterigui reducti	Characteristic bond strength	Ψwf	MPa	4.9	4.7	4.3	3.8	3.6
	Temperature	in cracked concrete	$ au_{k,cr}$	(psi)	(710)	(675)	(620)	(545)	(520)
ioi	Temperature range A ³	Characteristic bond strength		MPa	10.2	9.6	9.1	8.7	8.5
Underwater application		in uncracked concrete	$ au_{k,uncr}$	(psi)	(1,480)	(1,390)	(1,325)	(1,260)	(1,235)
арр		Characteristic bond strength	_	MPa	2.6	2.5	2.3	2.0	1.9
ater	Temperature range B ³ Characteristic bond strengt in uncracked concrete ²		$ au_{k,cr}$	(psi)	(380)	(365)	(340)	(295)	(280)
erws		Characteristic bond strength		MPa	5.5	5.2	5.0	4.7	4.6
Jnd		in uncracked concrete ²	T _{k,uncr}	(psi)	(805)	(755)	(720)	(680)	(670)
	Anchor Categor	y, underwater application	-	-	3	3	3	3	3
	Strength reducti	on factor	ϕ_{uw}	-	0.45	0.45	0.45	0.45	0.45

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2.500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent.

Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴For structures assigned to Seismic Design Categories C, D, E or F, $\alpha_{N,seis}$ = 1.00.

TABLE 22—BOND STRENGTH DESIGN INFORMATION FOR METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A CORE DRILL^{1,4}

-		TION	0	1114		Nominal bo	lt/cap screw	diameter (in.)	
DE	ESIGN INFORMA	HON	Symbol	Units	8	10	12	16	20
	Cinnet O.D.		-1	mm	12.5	16.5	20.5	25.5	27.5
ПΙ	S insert O.D.		d	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
	Tomporatura	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa (psi)	8.3 (1205)	7.4 (1080)	6.8 (985)	6.2 (900)	6.0 (870)
	Temperature range A ³	Cff ative and a descript doubt	4-	mm	90	110	125	170	205
ete		Effective embedment depth	h _{ef}	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
Concrete	Temperature	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	MPa (psi)	4.5 (655)	4.0 (580)	3.7 (535)	3.4 (495)	N/A
ΟŊ	range B ³	Effective embedment denth	h _{ef}	mm	90	110	125	170	205
Dry		Effective embedment depth		(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
	Anchor Categor	y, dry concrete	-	-	1	2	2	3	3
	Strength reducti	on factor	ϕ_{d}	-	0.65	0.55	0.55	0.45	0.45
		Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa (nai)	8.3	7.4	6.8	5.9	5.5
ete	Temperature range A ³	in unorabled controlete		(psi)	(1205)	(1080)	(985)	(855)	(800)
Concrete	Talige A	Effective embedment depth	h _{ef}	mm (in.)	90 (3.5)	110 (4.3)	125 (4.9)	170 (6.7)	205 (8.1)
Water-Saturated Co	Temperature	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	MPa (psi)	4.5 (655)	4.0 (580)	3.7 (535)	N/A	N/A
	range B ³	Effective embedment depth	h _{ef}	mm (in.)	90 (3.5)	110 (4.3)	125 (4.9)	170 (6.7)	205 (8.1)
	Anchor Categor	y, water-sat. concrete	-	-	2	3	3	3	3
	Strength reducti	on factor	φws	-	0.55	0.45	0.45	0.45	0.45

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and

seismic, bond strengths may be increased 40 percent.

Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature =110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Bond strength values applicable to Seismic Design Categories A and B only.

TABLE 23—STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS¹

55	NON INFORMATION	0	11-14-				Bar	size			
DE	SIGN INFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Nor	ninal bar diameter	d	in.	³ / ₈	1/2	⁵ / ₈	³ / ₄	⁷ / ₈	1	1 ¹ / ₈	1 ¹ / ₄
INOI	ninai bar diameter	a	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)
Bar	effective cross-sectional	A_{se}	in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.0	1.27
area	3	Ase	(mm ²)	(71)	(129)	(200)	(284)	(387)	(510)	(645)	(819)
		N _{sa}	lb	6,600	12,000	18,600	26,400	36,000	47,400	60,000	76,200
	Nominal strength as governed by steel	IV _{Sa}	(kN)	(29.4)	(53.4)	(82.7)	(117.4)	(160.1)	(210.9)	(266.9)	(339.0)
40	strength	V_{sa}	lb	3,960	7,200	11,160	15,840	21,600	28,440	36,000	45,720
. <u>'</u>		V _{Sa}	(kN)	(17.6)	(32.0)	(49.6)	(70.5)	(96.1)	(126.5)	(160.1)	(203.4)
ASTM A615 Gr.	Reduction for seismic shear	$lpha_{V, seis}$					0.	70			
ASTM	Strength reduction factor ϕ for tension ²	φ	-				0.	65			
	Strength reduction factor ϕ for shear ²	φ	-				0.	60			
		M	lb	9,900	18,000	27,900	39,600	54,000	71,100	90,000	114,300
	Nominal strength as governed by steel	N _{sa}	(kN)	(44.0)	(80.1)	(124.1)	(176.2)	(240.2)	(316.3)	(400.4)	(508.5)
0	strength	V_{sa}	lb	5,940	10,800	16,740	23,760	32,400	42,660	54,000	68,580
3r. 6		V _{Sa}	(kN)	(26.4)	(48.0)	(74.5)	(105.7)	(144.1)	(189.8)	(240.2)	(305.1)
ASTM A615 Gr. 60	Reduction for seismic shear	$lpha_{V,seis}$	1	0.70							
ASTN	Strength reduction factor ϕ for tension ²	φ	-	0.65							
	Strength reduction factor ϕ for shear ²	φ	-	0.60							

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. D-2 and Eq. D-29, as applicable. Nuts and washers must be appropriate for the rod.

²For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable.

TABLE 24—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS1

DEGION INFORMATION	0	11-14-				Bar	size			
DESIGN INFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Effectiveness factor for	1,	in-lb			•		17			
cracked concrete	K _{c,cr}	(SI)				(7	7.1)			
Effectiveness factor for	k	in-lb				2	24			
uncracked concrete	k _{c,uncr}	(SI)				('	10)			
Min. bar spacing ³		in.	1 ⁷ / ₈	2 ¹ / ₂	3 ¹ / ₈	3 ³ / ₄	4 ³ / ₈	5	5 ⁵ / ₈	6 ¹ / ₄
Will. Dai Spacing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Min. edge distance ³		in.	1 ⁷ / ₈	2 ¹ / ₂	3 ¹ / ₈	3 ³ / ₄	4 ³ / ₈	5	5 ⁵ / ₈	6 ¹ / ₄
wiiri. eage distance	C _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Minimum member thickness	-	in.	h _{ef} +	- 1 ¹ / ₄			.	. 04		
Minimum member thickness	h _{min}	(mm)	(h _{ef} -	+ 30)			Π _{ef} ¬	+ 2d ₀		
Critical edge distance – splitting (for uncracked concrete)	Cac	-			See	Section 4.1	.10 of this re	eport.		
Strength reduction factor for tension, concrete failure ϕ - 0.65 modes, Condition B ²										
Strength reduction factor for shear, concrete failure modes, Condition B ²	ition B^2 ction factor for the failure ϕ - 0.70									

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Additional setting information is described in Figure 8, installation instructions.

² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement.

³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 25—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT^{1,4}

								Bar	size			
DE	SIGN INFORM	IATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
N Air	imum Embods	mont	b	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	4 ¹ / ₂	5
IVIII	nimum Embedr	nent	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
Ma	ximum Embed	ment	h _{ef,max}	in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	22 ¹ / ₂	25
<u> </u>				(mm) Psi	(191) 1,590	(254) 1,570	(318)	(381) 1,455	(445) 1.405	(508)	(572) 1,335	(635) 1,310
}	T	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(11.0)	(10.8)	1,505	1	(9.7)	1,365	(9.2)	(9.0)
}	Temperature range A ³			(IVIFa) Psi	595	595	(10.4) 595	(10.0) 595	595	(9.4) 565	535	510
ę		Characteristic bond strength in cracked concrete ²	$ au_{k,cr}$	(MPa)	(4.1)	(4.1)	(4.1)	(4.1)	(4.1)	(3.9)	(3.7)	(3.5)
Concrete		Characteristic bond strength in		Psi	865	850	815	785	765	740	725	710
ပိ	Temperature	uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(6.0)	(5.9)	(5.6)	(5.4)	(5.3)	(5.1)	(5.0)	(4.9)
Dry	range B ³	Characteristic bond strength in cracked concrete ²	$ au_{k,cr}$	Psi (MPa)	320 (2.2)	320 (2.2)	320 (2.2)	320 (2.2)	320 (2.2)	305 (2.1)	290 (2.0)	275 (1.9)
}	Anchor Categ	ory, dry concrete	-	-	1	1	1	1	2	2	2	2
}	Strength Red	uction factor	$\phi_{\sf d}$	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55	0.55
		Characteristic bond strength in	_	Psi	1,590	1,570	1,505	1,455	1,405	1,355	1,295	1,230
ete	Temperature	uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(11.0)	(10.8)	(10.4)	(10.0)	(9.7)	(9.3)	(8.9)	(8.5)
Concrete	range A ³	Characteristic bond strength in	70	Psi	595	595	595	595	595	560	520	475
ပ္မ		cracked concrete ²	$ au_{k,cr}$	(MPa)	(4.1)	(4.1)	(4.1)	(4.1)	(4.1)	(3.9)	(3.6)	(3.3)
Saturated	Temperature	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	Psi (MPa)	865 (6.0)	850 (5.9)	815 (5.6)	785 (5.4)	765 (5.3)	735 (5.1)	705 (4.8)	665 (4.6)
er Satı	range B ³	Characteristic bond strength in cracked concrete ²	$ au_{k,cr}$	Psi (MPa)	320 (2.2)	320 (2.2)	320 (2.2)	320 (2.2)	320 (2.2)	300 (2.1)	280 (1.9)	260 (1.8)
Water	Anchor Categ	ory, water saturated concrete	-	-	2	2	2	3	3	3	3	3
	Strength Red	uction factor	φws	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45
		Characteristic bond strength in	,	Psi	1,590	1,570	1,445	1,325	1,220	1,145	1,095	1,035
o)	Temperature	uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(11.0)	(10.8)	(10.0)	(9.1)	(8.4)	(7.9)	(7.5)	(7.1)
cret	range A ³	Characteristic bond strength in	_	Psi	595	595	570	540	515	475	440	400
S		cracked concrete ²	$ au_{k,cr}$	(MPa)	(4.1)	(4.1)	(3.9)	(3.7)	(3.6)	(3.3)	(3.0)	(2.8)
Water-filled hole Concrete	Temperature	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	Psi (MPa)	865 (6.0)	850 (5.9)	780 (5.4)	710 (4.9)	665 (4.6)	620 (4.3)	595 (4.1)	560 (3.9)
r-fille	range B ³	Characteristic bond strength in	$ au_{k,cr}$	Psi	320	320	305	290	275	255	235	215
Vate	A l O - 1	cracked concrete ²		(MPa)	(2.2)	(2.2)	(2.1)	(2.0)	(1.9)	(1.8)	(1.6)	(1.5)
_		ory, water filled hole	-	-	3	3	3	3	3	3	3	3
<u> </u>	Strength Red		ϕ_{wt}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
_	Temperature	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	Psi (MPa)	1,510 (10.4)	1,475 (10.2)	1,415 (9.8)	1,355 (9.3)	1,295 (8.9)	1,255 (8.7)	1,225 (8.5)	1,190 (8.2)
application	range A ³	Characteristic bond strength in cracked concrete ²	$ au_{k,cr}$	Psi (MPa)	565 (3.9)	560 (3.9)	560 (3.9)	555 (3.8)	545 (3.8)	520 (3.6)	495 (3.4)	460 (3.2)
	Temperature	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	Psi (MPa)	820 (5.7)	800 (5.5)	765 (5.3)	725 (5.0)	705 (4.8)	680 (4.7)	665 (4.6)	650 (4.5)
Underwater	range B ³	Characteristic bond strength in cracked concrete ²	τ _{k,cr}	Psi (MPa)	300 (2.1)	300 (2.1)	300 (2.1)	295 (2.0)	295 (2.0)	280 (1.9)	265 (1.8)	250 (1.7)
ů	Anchor Categ	ory, underwater application	-	-	3	3	3	3	3	3	3	3
	Strength Red	• • • • • • • • • • • • • • • • • • • •	$\phi_{\scriptscriptstyle \! UW}$	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f'_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and

seismic, bond strengths may be increased 40 percent.

Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by $\alpha_{N,sels}$ = 1.00.

TABLE 26—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A CORE DRILL 1.4

-		UNIT REII			1110220	<u> </u>			size			
DE	ESIGN INFORM	ATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
		Characteristic bond in		psi	1,225	1,195	1,090	1,010	955	900	861	820
		uncracked concrete	Tk,uncr	(MPa)	(8.4)	(8.2)	(7.5)	(7.0)	(6.6)	(6.2)	(5.9)	(5.7)
	Temperature	Minimum Embedment	h	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	41/2	5
	range A ³	Williman Embeament	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
		Maximum Embedment	h.	in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	22 ¹ / ₂	25
je j		Maximum Embedment	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
Dry Concrete		Characteristic bond in	-	psi	665	650	595	550	520	495	N/A	N/A
ပိ		uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(4.6)	(4.5)	(4.1)	(3.8)	(3.6)	(3.4)	14/74	IVA
5	Temperature	Minimum Embedment	h	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	31/2	31/2	4	4 ¹ / ₂	5
	range B ³	Willimani Embeament	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
		Maximum Embedment	6	in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	22 ¹ / ₂	25
		Maximum Embedment	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
	Anchor Catego	ory, dry concrete	-	-	1	1	2	2	2	3	3	3
	Strength Redu	ction factor	ϕ_{d}	-	0.65	0.65	0.55	0.55	0.55	0.45	0.45	0.45
		Characteristic bond in	_	psi	1,225	1,195	1,090	1,010	955	855	780	725
		uncracked concrete	$ au_{k,uncr}$	(MPa)	(8.4)	(8.2)	(7.5)	(7.0)	(6.6)	(5.9)	(5.4)	(5.0)
	Temperature	Minimum Embedment	h _{ef,min}	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	4 ¹ / ₂	5
4	range A ³	Williman Embeament	l let,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
crete		Maximum Embedment	h _{ef,max}	in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	22 ¹ / ₂	25
Con		IWAXIII'UIII EIIIDEGIIIEIII	l let,max	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
ted		Characteristic bond in	τ.	psi	665	650	595	550	520	N/A	N/A	N/A
tura		uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(4.6)	(4.5)	(4.1)	(3.8)	(3.6)	14/7	14/7 (14// (
r Sa	Temperature	Minimum Embedment	h _{ef.min}	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	4 ¹ / ₂	5
Water Saturated Concrete	range B ³	Willimani Embeament	I lef,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
>		Maximum Embadment	h	in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	22 ¹ / ₂	25
		Maximum Embedment	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
	Anchor Category, water-sat. concrete	-	-	2	2	3	3	3	3	3	3	
	Strength Redu	unchor Category, water-sat. concrete strength Reduction factor	φws	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

seismic, bond strengths may be increased 40 percent.

³Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Bond strength values applicable to Seismic Design Categories A and B only.

TABLE 27—STEEL DESIGN INFORMATION FOR EU METRIC REINFORCING BARS¹

DE(CION INFORMATION	Comple al	11:::4=					Bar size				
DE	SIGN INFORMATION	Symbol	Units	8	10	12	14	16	20	25	28	32
Non	ninal bar diameter	d	mm	8.0	10.0	12.0	14.0	16.0	20.0	25.0	28.0	32.0
NOI	ninai bai diametei	u	(in.)	(0.315)	(0.394)	(0.472)	(0.551)	(0.630)	(0.787)	(0.984)	(1.102)	(1.260)
Bar	effective cross-sectional	4	mm²	50.3	78.5	113.1	153.9	201.1	314.2	490.9	615.8	804.2
area	a	A _{se}	(in.²)	(0.078)	(0.122)	(0.175)	(0.239)	(0.312)	(0.487)	(0.761)	(0.954)	(1.247)
			kN	27.5	43.0	62.0	84.5	110.5	173.0	270.0	338.5	442.5
	Nominal strength as	N _{sa}	(lb)	(6,215)	(9,711)	(13,98 4)	(19,03 4)	(24,86 0)	(38,84 4)	(60,69 4)	(76,13 5)	(99,44 1)
00	governed by steel strength	V _{sa}	kN	16.5	26.0	37.5	51.0	66.5	103.0	162.0	203.0	265.5
t 550/500	strength		(lb)	(3,729)	(5,827)	(8,390)	(11,42 0)	(14,91 6)	(23,30 7)	(36,41 6)	(45,68 1)	(59,66 5)
488 BSt	Reduction for seismic shear	$lpha_{V, seis}$	-	0.70								
DIN	Strength reduction factor ϕ for tension ²	φ	-	0.65								
	Strength reduction factor ϕ for shear ²	φ	-	0.60								

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

TABLE 28—CONCRETE BREAKOUT DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT 1

DECICN INFORMATION	Comple al	Heite			•	•	Bar size	•	•		
DESIGN INFORMATION	Symbol	Units	8	10	12	14	16	20	25	28	32
Effectiveness factor for	l _k	SI					7.1				
cracked concrete	k _{c,cr}	(in-lb)					(17)				
Effectiveness factor for	<i>k</i>	SI					10				
uncracked concrete	k _{c,uncr}	(in-lb)					(24)				
Min. bar spacing ³	,	mm	40	50	60	70	80	100	125	140	160
Will. Dai Spacing	S _{min}	(in.)	(1.6)	(2)	(2.4)	(2.8)	(3.1)	(3.9)	(4.9)	(5.5)	(6.3)
Min. edge distance ³		mm	40	50	60	70	80	100	125	140	160
wiiri. euge distance	C _{min}	(in.)	(1.6)	(2)	(2.4)	(2.8)	(3.1)	(3.9)	(4.9)	(5.5)	(6.3)
Minimum member thickness	h	mm	h _{ef} -	+ 30				h _{ef} + 2d _o			
Willimum member unckness	h _{min}	(in.)	(h _{ef} +	- 1 ¹ / ₄)				Hef ▼ ZU ₀			
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-			(See Sectio	n 4.1.10 of	this repor	t.		
Strength reduction factor for tension, concrete failure ϕ - 0.65 modes, Condition B ²											
Strength reduction factor for shear, concrete failure ϕ - 0.70 modes, Condition B ²								-			

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI

³¹⁸⁻¹¹ Eq. D-2 and Eq. D-29, as applicable. Other material specifications are admissible. Nuts and washers must be appropriate for the rod. ²For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11D.4.3, as applicable.

¹Additional setting information is described in Figure 8, installation instructions. ² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement.

³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 29—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT^{1,4}

D	NON INCORT	ATION	0	Ha!4-					Bar size				
DE	SIGN INFORM	ATION	Symbol	Units	8	10	12	14	16	20	25	28	32
N 4:			1-	mm	60	60	70	75	80	90	100	112	128
IVIIN	imum Embedm	ent	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(2.95)	(3.1)	(3.5)	(3.9)	(4.4)	(5.0)
Mar	kimum Embedn	nent	h _{ef,max}	mm	160	200	240	280	320	400	500	560	640
IVIG	CITICITI ETIDECIT		r ret,max	(in.)	(6.3)	(7.9)	(9.4)	(11.1)	(12.6)	(15.7)	(19.8)	(22.2)	(25.3)
		Characteristic bond strength in uncracked	_	MPa	11.0	11.0	11.0	10.7	10.4	9.9	9.5	9.2	9.0
	Temperature	concrete ²	$ au_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1545)	(1505)	(1435)	(1375)	(1340)	(1310)
	range A ³	Characteristic bond		MPa	4.1	4.1	4.1	4.1	4.1	4.1	4.0	3.7	3.5
g)		strength in cracked concrete ²	$ au_{k,cr}$	(psi)	(590)	(590)	(590)	(590)	(590)	(590)	(580)	(535)	(510)
Concrete		Characteristic bond		,, ,	,	, ,	` ′	` ′	, ,	, ,	` ,	, ,	, ,
ono		strength in uncracked	T _{k,uncr}	MPa (psi)	6.0 (865)	6.0 (865)	6.0 (865)	5.8 (840)	5.6 (815)	5.4 (775)	5.1 (745)	5.0 (725)	4.9 (710)
	Temperature	concrete ²		(þsi)	(803)	(803)	(803)	(040)	(013)	(113)	(743)	(723)	(710)
Dry	range B ³	Characteristic bond	_	MPa	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.0	1.9
		strength in cracked concrete ²	$ au_{k,cr}$	(psi)	(320)	(320)	(320)	(320)	(320)	(320)	(320)	(290)	(275)
	Anchor Catego	ory, dry concrete	-	-	1	1	1	1	1	1	2	2	2
	Strength Redu	ction factor	ϕ_d	-	0.65	0.65	0.65	0.65	0.65	0.65	0.55	0.55	0.55
		Characteristic bond		MPa	11.0	11.0	11.0	10.7	10.4	9.9	9.5	9.0	8.5
	Tomporatura	strength in uncracked	$ au_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1545)	(1505)	(1435)	(1375)	(1300)	(1230)
Concrete	Temperature range A ³	concrete ² Characteristic bond		MPa	4.1	4.1	4.1	4.1	4.1	4.1	4.0	3.6	3.3
ncr	95	strength in cracked	$ au_{k,cr}$								-		
ပိ		concrete ²		(psi)	(595)	(595)	(595)	(595)	(595)	(595)	(580)	(520)	(475)
ted		Characteristic bond strength in uncracked	$ au_{k,uncr}$	MPa	6.0	6.0	6.0	5.8	5.6	5.4	5.1	4.9	4.6
nra	Temperature of	concrete ²	₽K,uncr	(psi)	(865)	(865)	(865)	(840)	(815)	(775)	(745)	(705)	(670)
Saturated	range B ³	Characteristic bond		MPa	2.2	2.2	2.2	2.2	2.2	2.2	2.2	1.9	1.8
ter	s	strength in cracked	$ au_{k,cr}$	(psi)	(320)	(320)	(320)	(320)	(320)	(320)	(320)	(280)	(260)
Water	concrete ² Anchor Category, water sat.			" ,	, ,	, ,	, ,	, ,	` ,	` ,	, ,	. ,	` ,
	concrete	ny, water eat.	-	-	2	2	2	3	3	3	3	3	3
	Strength Redu		$\phi_{ m ws}$	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45
		Characteristic bond		MPa	11.0	11.0	11.0	10.5	10.0	8.9	8.1	7.6	7.1
g)	Temperature	strength in uncracked concrete ²	$ au_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1530)	(1445)	(1290)	(1170)	(1100)	(1035)
Concrete	range A ³	Characteristic bond		MPa	4.1	4.1	4.1	4.1	3.9	3.7	3.4	3.0	2.8
Ö		strength in cracked concrete ²	$ au_{k,cr}$	(psi)	(595)	(595)	(595)	(590)	(570)	(535)	(495)	(440)	(400)
le C		Characteristic bond		,	,	, ,	` ′	` ′	, ,	, ,	` ,	, ,	, ,
hole (strength in uncracked	$ au_{k,uncr}$	MPa	6.0	6.0	6.0	5.7	5.4	4.8	4.3	4.1	3.9
lled	Temperature	concrete ²	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(psi)	(865)	(865)	(865)	(755)	(785)	(700)	(630)	(595)	(560)
er-filled	range B ³	Characteristic bond	_	MPa	2.2	2.2	2.2	2.2	2.1	2.0	1.9	1.6	1.5
Wate		strength in cracked concrete ²	$ au_{k,cr}$	(psi)	(320)	(320)	(320)	(315)	(305)	(285)	(270)	(235)	(215)
>	Anchor Catego	ory, water filled hole	-	-	3	3	3	3	3	3	3	3	3
	Strength Redu	ction factor	$\phi_{\rm wf}$	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
		Characteristic bond		MPa	10.4	10.4	10.3	10.1	9.7	9.2	8.8	8.5	8.2
	Temperature	strength in uncracked concrete ²	$T_{k,uncr}$	(psi)	(1510)	(1510)	(1495)	(1460)	(1400)	(1335)	(1265)	(1235)	(1190)
on	range A ³	Characteristic bond		MPa	3.9	3.9	3.9	3.9	3.8	3.8	3.7	3.4	3.2
cati		strength in cracked	$ au_{k,cr}$	(psi)	(565)	(565)	(560)	(560)	3.8 (550)	3.8 (550)	(535)	(495)	3.2 (460)
ilda		concrete ² Characteristic bond		., ,	(-50)			(-50)	, ,		(-30)		
r a		strength in uncracked	$ au_{k,uncr}$	MPa	5.7	5.7	5.6	5.4	5.2	5.0	4.7	4.6	4.5
/ate	Temperature	concrete ²	₹ĸ,unci	(psi)	(820)	(820)	(810)	(790)	(760)	(725)	(685)	(670)	(650)
Underwater application	range B³	Characteristic bond		MPa	2.1	2.1	2.1	2.1	2.0	2.0	2.0	1.8	1.7
Jnd		strength in cracked concrete ²	$ au_{k,cr}$	(psi)	(305)	(305)	(300)	(300)	(295)	(295)	(295)	(265)	(250)
_	Anchor Catego	pry, underwater app.	_	-	3	3	3	3	3	3	3	3	3
	Strength Redu		ϕ_{uw}		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
<u> </u>		nm 1 lbf = 4 448 N 1 psi =		4D								0.40	0.70

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For lb-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and

seismic, bond strengths may be increased 40 percent. ³Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by $\alpha_{N,seis} = 1.00$.

TABLE 30—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A CORE DRILL

									Bar size				
DE	SIGN INFORMA	ATION	Symbol	Units	8	10	12	14	16	20	25	28	32
		Characteristic bond in		MPa	8.4	8.4	8.4	7.9	7.5	6.8	6.3	6.0	5.7
		uncracked concrete	T _{k,uncr}	(psi)	(1,225)	(1,225)	(1,225)	(1,150)	(1,090)	(992)	(905)	(870)	(825)
	Temperature	Minimum embedment	h	mm	60	60	70	75	80	90	100	112	128
	range A ³	williman embedment	h _{ef,min}	(in.)	(2.36)	(2.36)	(2.76)	(2.95)	(3.15)	(3.54)	(3.94)	(4.41)	(5.04)
		Maximum embedment	h _{ef,max}	mm	160	200	240	280	320	400	500	560	640
			l let, max	(in.)	(6.3)	(7.9)	(9.4)	(11.1)	(12.6)	(15.7)	(19.8)	(22.2)	(25.3)
rete		Characteristic bond strength in uncracked	τ.	MPa	4.6	4.6	4.6	4.3	4.1	3.7	3.4	N/A	N/A
Concrete		concrete ²	$ au_{k,uncr}$	(psi)	(665)	(665)	(665)	(625)	(595)	(535)	(495)	14// (14// (
Dry (Temperature	Minimum embedment	h _{ef.min}	mm	60	60	70	75	80	90	100	112	128
	range B ³	William Chibedinent	ret,min	(in.)	(2.36)	(2.36)	(2.76)	(2.95)	(3.15)	(3.54)	(3.94)	(4.41)	(5.04)
		Maximum embedment	h _{ef max}	mm	160	200	240	280	320	400	500	560	640
		Iviaximum embedment	l let, max	(in.)	(6.3)	(7.9)	(9.4)	(11.1)	(12.6)	(15.7)	(19.8)	(22.2)	(25.3)
	Anchor Category, dry concrete		-	-	1	1	1	2	2	2	3	3	3
	Strength reduction factor		ϕ_{d}	-	0.65	0.65	0.65	0.55	0.55	0.55	0.45	0.45	0.45
		Characteristic bond in	_	MPa	8.4	8.4	8.4	7.9	7.5	6.8	6.0	5.5	5.0
		uncracked concrete	$ au_{k,uncr}$	(psi)	(1,225)	(1,225)	(1,225)	(1,150)	(1,090)	(992)	(870)	(800)	(725)
	Temperature	Minimum embedment	h	mm	60	60	70	75	80	90	100	112	128
	range A ³	IVIII III CIII CIII CIII CIII CIII CIII	h _{ef,min}	(in.)	(2.36)	(2.36)	(2.76)	(2.95)	(3.15)	(3.54)	(3.94)	(4.41)	(5.04)
afe		Maximum embedment	h _{ef,max}	mm	160	200	240	280	320	400	500	560	640
ncr			rrei,max	(in.)	(6.3)	(7.9)	(9.4)	(11.1)	(12.6)	(15.7)	(19.8)	(22.2)	(25.3)
Water-saturated Concrete		Characteristic bond strength in uncracked	T _{k.uncr}	MPa	4.6	4.6	4.6	4.3	4.1	3.7	N/A	N/A	N/A
ırate		concrete ²	*K,unci	(psi)	(665)	(665)	(665)	(625)	(595)	(535)			
satu	Temperature	Minimum embedment	h _{ef.min}	mm	60	60	70	75	80	90	100	112	128
ater-	range B ³		··ei,iiiii	(in.)	(2.36)	(2.36)	(2.76)	(2.95)	(3.15)	(3.54)	(3.94)	(4.41)	(5.04)
Š		Maximum embedment	h _{ef.max}	mm	160	200	240	280	320	400	500	560	640
			rei,iiiaX	(in.)	(6.3)	(7.9)	(9.4)	(11.1)	(12.6)	(15.7)	(19.8)	(22.2)	(25.3)
	Anchor Catego	ory, water-sat.concrete	-	-	2	2	2	3	3	3	3	3	3
	Strength reduc	tion factor	$\phi_{ m ws}$	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45

For **SI**: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

seismic, bond strengths may be increased 40 percent.

Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Bond strength values applicable to Seismic Design Categories A and B only.

TABLE 31—STEEL DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS1

DE:	NICH INFORMATION	Complete	l luite			Bar size				
DE	SIGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M		
Nor	ninal bar diameter	d	mm	11.3	16.0	19.5	25.2	29.9		
INOI	illiai bai diametei	U	(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)		
Don	effective cross-sectional area	4	mm ²	100.3	201.1	298.6	498.8	702.2		
Dai	enective cross-sectional area	A _{se}	(in.²)	(0.155)	(0.312)	(0.463)	(0.773)	(1.088)		
		M	kN	54.0	108.5	161.5	270.0	380.0		
	Nominal strength as governed by steel	N _{sa}	(lb)	(12,175)	(24,408)	(36,255)	(60,548)	(85,239)		
0	strength	V _{sa}	kN	32.5	65.0	97.0	161.5	227.5		
A G30		V _{Sa}	(lb)	(7,305)	(14,645)	(21,753)	(36,329)	(51,144)		
CSA	Reduction for seismic shear	$lpha_{V, seis}$	-			0.70				
	Strength reduction factor ϕ for tension ²	φ	-	0.65						
	Strength reduction factor ϕ for shear ²	φ	-	0.60						

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. D-2 and Eq. D-29, as applicable. Other material specifications are admissible. Use nuts and washers appropriate for the rod strength.

2For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable.

TABLE 32—CONCRETE BREAKOUT DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT

DECICL INFORMATION		11-14-			Bar size				
DESIGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M		
Effectiveness factor for	1.	SI			7.1				
cracked concrete	K _{c,cr}	(in-lb)			(17)				
Effectiveness factor for	,	SI			10				
uncracked concrete	K _{c,uncr}	(in-lb)			(24)				
Min har angaing ³		mm	57	80	98	126	150		
Min. bar spacing ³	S _{min}	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)		
Min ada distant	_	mm	57	80	98	126	150		
Min. edge distance ³	C _{min}	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)		
Minimo una manana au finintra a a	-	mm	h _{ef} + 30		b .	24			
Minimum member thickness	h _{min}	(in.)	$(h_{ef} + 1^{1}/_{4})$		h _{ef} +	20 ₀			
Critical edge distance – splitting (for uncracked concrete)	Cac	-	·	See Se	ection 4.1.10 of this	report.			
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-			0.65				
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-	0.70						

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Additional setting information is described in Figure 8, installation instructions. ² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement.

³For installations with 1³/₄ inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 33—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT^{1,4}

	DESI	CN INFORMATION	Symphol	Unito			Bar size		
	DESIG	GN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
			t-	mm	60	80	90	101	120
IVI	inimum embedme	ent deptn	h _{ef,min}	(in.)	(2.37)	(3.15)	(3.54)	(3.97)	(4.71)
				mm	226	320	390	504	598
M	aximum embedm	ent depth	h _{ef,max}	(in.)	(9.0)	(12.6)	(15.4)	(20.0)	(23.6)
		Characteristic bond strength in		MPa	4.1	4.1	4.1	3.9	3.6
	Temperature	cracked concrete	$ au_{k,cr}$	(psi)	(595)	(595)	(595)	(595)	(520)
	range A ³	Characteristic bond strength in		MPa	11.0	10.4	10.0	9.5	9.1
ete		uncracked concrete	$ au_{k,uncr}$	(psi)	(1,590)	(1,505)	(1,445)	(1,375)	(1,320)
Dry Concrete		Characteristic bond strength in		MPa	2.2	2.2	2.2	2.1	2.0
ပိ	Temperature	cracked concrete ²	$ au_{k,cr}$	(psi)	(320)	(320)	(320)	(305)	(290)
Dry	range B ³	Characteristic bond strength in	_	MPa	6.0	5.6	5.4	5.1	4.9
		uncracked concrete ²	$ au_{k,uncr}$	(psi)	(865)	(815)	(785)	(745)	(715)
	Anchor Categor		-	-	1	1	1	2	2
	Strength reducti	on factor	$\phi_{ extsf{d}}$	-	0.65	0.65	0.65	0.55	0.55
		Characteristic bond strength in	τ.	MPa	4.1	4.1	4.1	3.9	3.4
ete	Temperature	cracked concrete	$ au_{k,cr}$	(psi)	(595)	(595)	(595)	(565)	(495)
ncre	range A ³	Characteristic bond strength in		MPa	11.0	10.4	10.0	9.5	8.7
ပ္		uncracked concrete	Tk,uncr	(psi)	(1,590)	(1,505)	(1,445)	(1,375)	(1,255)
atec		Characteristic bond strength in		MPa	2.2	2.2	2.2	2.1	1.9
Water-Saturated Concrete	Temperature	cracked concrete ²	$ au_{k,cr}$	(psi)	(320)	(320)	(320)	(305)	(275)
r-S	range B ³	Characteristic bond strength in		MPa	6.0	5.6	5.4	5.1	4.7
Vate		uncracked concrete ²	T _{k,uncr}	(psi)	(865)	(815)	(785)	(745)	(680)
>		y, water-sat. concrete	-	-	2	3	3	3	3
	Strength reducti	on factor	$\phi_{ m ws}$	-	0.55	0.45	0.45	0.45	0.45
		Characteristic bond strength in	$ au_{k,cr}$	MPa	4.1	3.9	3.7	3.3	2.9
ete	Temperature	cracked concrete	VK,CI	(psi)	(595)	(570)	(540)	(480)	(425)
Concrete	range A ³	Characteristic bond strength in	$ au_{k,uncr}$	MPa	11.0	10.0	9.1	8.1	7.4
Ö		uncracked concrete	*K,unci	(psi)	(1,590)	(1,445)	(1,315)	(1,170)	(1,070)
er-filled hole		Characteristic bond strength in cracked concrete ²	$ au_{k,cr}$	MPa	2.2	2.1	2.0	1.8	1.6
lled	Temperature range B ³		11,01	(psi)	(320)	(305)	(290)	(260)	(230)
er-fi	range b	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	MPa	6.0	5.4	4.9	4.3	4.0
Wat	Ancher Categor	y, water-filled hole		(psi)	(865)	(785)	(715) 3	(630)	(575)
	Strength reducti	•	<u>-</u>		0.45	0.45	0.45	0.45	0.45
	Strength reducti	Characteristic bond strength in	ϕ_{wf}	- MPa	3.9	3.9	3.8	3.6	3.3
	Temperature	cracked concrete	$ au_{k,cr}$	(psi)	(565)	(560)	(555)	(520)	(475)
o	range A ³	Characteristic bond strength in		MPa	10.4	9.8	9.3	8.7	8.3
Underwater application		uncracked concrete	$ au_{k,uncr}$	(psi)	(1,510)	(1,415)	(1,325)	(1,265)	(1,200)
lddr		Characteristic bond strength in		MPa	2.1	2.1	2.0	1.9	1.8
ter a	Temperature	cracked concrete ²	$ au_{k,cr}$	(psi)	(305)	(300)	(295)	(280)	(265)
Na	range B ³	Characteristic bond strength in uncracked concrete ²	_	MPa	5.7	5.3	5.0	4.7	4.5
nde		uncracked concrete ²	$ au_{k,uncr}$	(psi)	(820)	(770)	(720)	(685)	(650)
Ī	Anchor Categor	y, underwater application	-	-	3	3	3	3	3
	Strength reducti	on factor	$\phi_{\scriptscriptstyle \! UW}$	-	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.For lb-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and

seismic, bond strengths may be increased 40 percent.

Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by $\alpha_{N,\text{seis}}$ =1.00.

TABLE 34—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A CORE DRILL 1,4

	DEGLO	NUNEORMATION	0	11			Bar size		
	DESIG	N INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
		Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa (psi)	8.4 (1225)	7.5 (1090)	6.9 (1005)	6.3 (905)	5.8 (840)
	Temperature range A ³	Minimum embedment depth	h _{ef,min}	mm (in.)	60 (2.37)	80 (3.15)	90 (3.54)	101 (3.97)	120 (4.71)
te		Maximum embedment depth	h _{ef,max}	mm (in.)	226 (9.0)	320 (12.6)	390 (15.4)	504 (20.0)	598 (23.6)
Dry Concrete		Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	MPa (psi)	4.6 (665)	4.1 (595)	3.8 (550)	3.4 (495)	N/A
Dry	Temperature range B ³	Minimum embedment depth	h _{ef,min}	mm (in.)	60 (2.37)	80 (3.15)	90 (3.54)	101 (3.97)	120 (4.71)
		Maximum embedment depth	h _{ef,max}	mm (in.)	226 (9.0)	320 (12.6)	390 (15.4)	504 (20.0)	598 (23.6)
	Anchor Category	, dry concrete	-	-	1	2	2	3	3
	Strength reductio	n factor	φ _d	-	0.65	0.55	0.55	0.45	0.45
		Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa (psi)	8.4 (1225)	7.5 (1090)	6.9 (1005)	6.0 (870)	5.2 (755)
क	Temperature range A ³	Minimum embedment depth	h _{ef,min}	mm (in.)	60 (2.37)	80 (3.15)	90 (3.54)	101 (3.97)	120 (4.71)
Concret		Maximum embedment depth	h _{ef,max}	mm (in.)	226 (9.0)	320 (12.6)	390 (15.4)	504 (20.0)	598 (23.6)
rated (Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	MPa (psi)	4.6 (665)	4.1 (595)	3.8 (550)	3.3 (475)	N/A
Water-saturated Concrete	Temperature range B ³	Minimum embedment depth	h _{ef,min}	mm (in.)	60 (2.37)	80 (3.15)	90 (3.54)	101 (3.97)	120 (4.71)
Wat		Maximum embedment depth	h _{ef,max}	mm (in.)	226 (9.0)	320 (12.6)	390 (15.4)	504 (20.0)	598 (23.6)
	Anchor Category	, water-sat. concrete	-	-	2	3	3	3	3
	Strength reductio	n factor	$\phi_{\!\scriptscriptstyle WS}$	-	0.55	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

seismic, bond strengths may be increased 40 percent.

³Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Bond strength values applicable to Seismic Design Categories A and B only.

FIGURE 5—HILTI HIT-RE 500-SD ANCHORING SYSTEM & STEEL ELEMENTS

TABLE 35—DEVELOPMENT LENGTH FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR A CORE DRILL 1, 2, 3, 5

	_	Criteria Section of					Bar	size			
DESIGN INFORMATION	Symbol	Reference Standard	Units	#3	#4	#5	#6	#7	#8	#9	#10
Nominal	d _b	ASTM A615/A706	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250
reinforcing bar diameter	u_b	A31W A015/A700	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)
Nominal bar area	Ab	ASTM A615/A706	in ² (mm ²)	0.11 (71.3)	0.20 (126.7)	0.31 (197.9)	0.44 (285.0)	0.60 (387.9)	0.79 (506.7)	1.00 (644.7)	1.27 (817.3)
Development length for $f_y = 60$ ksi and $f'_c = 2,500$	la	ACI 318 12.2.3	in.	12.0	14.4	18.0	21.6	31.5	36.0	40.5	45.0
psi (normal weight concrete) ⁴	Id	ACI 310 12.2.3	(mm)	(304.8)	(365.8)	(457.2)	(548.6)	(800.1)	(914.4)	(1028.7)	(1143)
Development length for $f_y = 60$,	ACI 318 12.2.3	in.	12.0	12.0	14.2	17.1	24.9	28.5	32.0	35.6
ksi and $f'_c = 4,000$ psi (normal weight concrete) ⁴	I _d	ACI 318 12.2.3	(mm)	(304.8)	(304.8)	(361.4)	(433.7)	(632.5)	(722.9)	(812.8)	(904.2)

For SI: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

$$_{5}\left(\frac{c_{b}+K_{tr}}{d_{b}}\right)=2.5$$
, $\psi_{t}=1.0$, $\psi_{e}=1.0$, $\psi_{s}=0.8$ for $d_{b}\leq$ #6, 1.0 for $d_{b}>$ #6.

TABLE 36—DEVELOPMENT LENGTH FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR A CORE DRILL 1, 2, 3, 5

	_	Criteria Section					Bar size			
DESIGN INFORMATION	Symbol	of Reference Standard	Units	8	10	12	16	20	25	32
Nominal reinforcing bar	d _h	BS 4449: 2005	mm	8	10	12	16	20	25	32
diameter	u_b	BS 4449. 2005	(in.)	(0.315)	(0.394)	(0.472)	(0.630)	(0.787)	(0.984)	(1.260)
Nominal bar area	Ab	BS 4449: 2005	mm² (in²)	50.3 (0.08)	78.5 (0.12)	113.1 (0.18)	201.1 (0.31)	314.2 (0.49)	490.9 (0.76)	804.2 (1.25)
Development length for $f_y = 72.5$ ksi and $f'_c = 2.500$ psi (pages)	I _d	ACI 318 12.2.3	mm	305	348	417	556	871	1087	1392
2,500 psi (normal weight concrete) 4			(in.)	(12.0)	(13.7)	(16.4)	(21.9)	(34.3)	(42.8)	(54.8)
Development length for $f_y = 72.5$ ksi and $f'_c =$	L	ACI 318 12.2.3	mm	305	305	330	439	688	859	1100
4,000 psi (normal weight concrete) 4	Id	A01 010 12.2.0	(in.)	(12.0)	(12.0)	(13.0)	(17.3)	(27.1)	(33.8)	(43.3)

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

$$_{5}\left(\frac{C_{b}+K_{tr}}{d_{b}}\right)=2.5$$
, $\psi_{t}=1.0$, $\psi_{e}=1.0$, $\psi_{s}=0.8$ for $d_{b}<20$ mm, 1.0 for $d_{b}\geq20$ mm.

Development lengths valid for static, wind, and earthquake loads (SDC A and B).
Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable, and section 4.2.4 of this report. The value of f_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and F.

The value of f_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in holes drilled with a core drill.

For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit $\lambda > 0.75$.

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

² Development lengths in SDC C through F must comply with ACI 318-14 Chater 18 or ACI 318-11 Chapter 21, as applicable, and section 4.2.4 of this report. The value of f_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and F.

³The value of f_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in holes drilled with a core drill.

⁴For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit $\lambda > 0.75$.

TABLE 37—DEVELOPMENT LENGTH FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR A CORE DRILL^{1, 2, 3, 5}

	_		0 11 1 0 11 1			Bar size			
DESIGN INFORMATION	Symbol	Criteria Section of Reference Standard	Units	10M	15M	20M	25M	30M	
Nominal reinforcing	d_b	CAN/CSA-G30.18 Gr. 400	mm	11.3	16.0	19.5	25.2	29.9	
bar diameter	u_b	CAN/C3A-G30.16 G1. 400	(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)	
			mm ²	100.3	201.1	298.6	498.8	702.2	
Nominal bar area	A_b	CAN/CSA-G30.18 Gr. 400	(in ²)	(0.16)	(0.31)	(0.46)	(0.77)	(1.09)	
Development length for $f_y = 58$ ksi and $f'_c =$	la	ACI 318 12.2.3	mm	315	445	678	876	1041	
2,500 psi (normal weight concrete) 4	,		(in.)	(12.4)	(17.5)	(26.7)	(34.5)	(41.0)	
Development length for f_y = 58 ksi and f'_c =	la	ACI 318 12.2.3	mm	305	353	536	693	823	
4,000 psi (normal weight concrete) 4	'a	A01010 12.2.0	(in.)	(12.0)	(13.9)	(21.1)	(27.3)	(32.4)	

For **SI:** 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

5
 $\left(\frac{C_b + K_{tr}}{d_b}\right)$ = 2.5, ψ_t = 1.0, ψ_e = 1.0, ψ_s = 0.8 for d_b < 20M, 1.0 for d_b ≥20M.

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B). ²Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable, and section 4.2.4 of this report. The value of f_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and

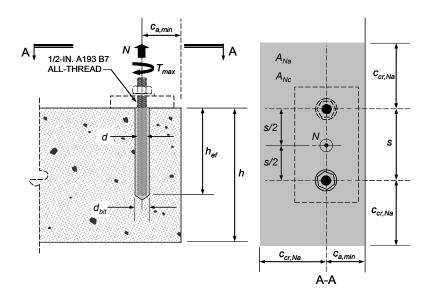
F. 3 The value of f_{c} used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in holes drilled with a core

drill. ⁴For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable,

Specifications / Assumptions:

ASTM A193 Grade B7 threaded rod Normal weight concrete, f_c = 4,000 psi Seismic Design Category (SDC) B No supplementary reinforcing in accordance with ACI 318-11 D.1 will be provided. Assume maximum short term (diurnal) base

Assume maximum snort term (diurnai) bas material temperature <u><</u> 130° F.


Assume maximum long term base material temperature < 110° F.

Assume installation in dry concrete and hammerdrilled holes.

Assume concrete will remain uncracked for service life of anchorage.

Dimensional Parameters:

 h_{ef} = 9.0 in. s = 4.0 in. $c_{a,min}$ = 2.5 in. h = 12.0 in. d = 1/2 in.

Calculation in accordance with ACI 318-11 Appendix D and this report	ACI 318 Code Ref.	Report Ref.
Step 1. Check minimum edge distance, anchor spacing and member thickness: $c_{min} = 2.5 \text{ in.} \le c_{a,min} = 2.5 \text{ in.} \therefore \text{ OK}$ $s_{min} = 2.5 \text{ in.} \le s = 4.0 \text{ in.} \therefore \text{ OK}$ $h_{min} = h_{ef} + 1.25 \text{ in.} = 9.0 + 1.25 = 10.25 \text{ in.} \le h = 12.0 \therefore \text{ OK}$ $h_{ef,min} \le h_{ef} \le h_{ef,max} = 2.75 \text{ in.} \le 9 \text{ in.} \le 10 \text{ in.} \therefore \text{ OK}$	-	Table 8 Table 9
Step 2. Check steel strength in tension:		
Single Anchor: $N_{sa} = A_{se} \cdot f_{uta} = 0.1419 \text{ in}^2 \cdot 125,000 \text{ ps} i = 17,738 \text{ lb.}$ Anchor Group: $\phi N_{sa} = \phi \cdot n \cdot A_{se} \cdot f_{uta} = 0.75 \cdot 2 \cdot 17,738 \text{ lb.} = 26,606 \text{ lb.}$ Or using Table 7: $\phi N_{sa} = 0.75 \cdot 2 \cdot 17,735 \text{ lb.} = 26,603 \text{ lb.}$	D.5.1.2 Eq. (D-2)	Table 2 Table 7
Step 3. Check concrete breakout strength in tension: $N_{cbg} = \frac{A_{Nc}}{A_{Nc0}} \cdot \psi_{ec,N} \cdot \psi_{ed,N} \cdot \psi_{c,N} \cdot \psi_{cp,N} \cdot N_b$	D.5.2.1 Eq. (D-4)	-
$A_{Nc} = (3 \cdot h_{ef} + s)(1.5 \cdot h_{ef} + c_{a,min}) = (3 \cdot 9 + 4)(13.5 + 2.5) = 496 in^2$	-	-
$A_{Nc0} = 9 \cdot h_{ef}^2 = 729 \text{ in}^2$	D.5.2.1 and Eq. (D-5)	-
$\psi_{\text{ec},N}$ = 1.0 no eccentricity of tension load with respect to tension-loaded anchors	D.5.2.4	-
$\psi_{\text{ed},N} = 0.7 + 0.3 \cdot \frac{c_{a,min}}{1.5h_{\text{ef}}} = 0.7 + 0.3 \cdot \frac{2.5}{1.5 \cdot 9} = \textbf{0.76}$	D.5.2.5 and Eq. (D-10)	-
$\psi_{c,N}$ = 1.0 uncracked concrete assumed ($k_{c,uncr}$ = 24)	D.5.2.6	Table 8
Determine c_{ac} : From Table 9: $\tau_{uncr} = 1,570 \text{ psi}$ $\tau_{uncr} = \frac{k_{c,uncr}}{\pi \cdot d} \sqrt{h_{ef} \cdot f'_{c}} = \frac{24}{\pi \cdot 0.5} \sqrt{9.0 \cdot 4,000} = 2,899 \text{ psi} > 1,570 \text{ psi} \therefore \text{ use } 1,570 \text{ psi}$ $c_{ac} = h_{ef} \cdot \left(\frac{\tau_{uncr}}{1,160}\right)^{0.4} \cdot \left[3.1 - 0.7 \cdot \frac{h}{h_{ef}}\right] = 9 \cdot \left(\frac{1,570}{1,160}\right)^{0.4} \cdot \left[3.1 - 0.7 \cdot \frac{12}{9}\right] = 22.0 \text{ in.}$	-	Section 4.1.10 Table 9
For $c_{a,min} < c_{ac}$ $\psi_{cp,N} = \frac{\max \left c_{a,min}; 1.5 \cdot h_{ef} \right }{c_{ac}} = \frac{\max \left 2.5; 1.5 \cdot 9 \right }{22.0} = $ 0.61	D.5.2.7 and Eq. (D-12)	-
$N_b = k_{c,uncr} \cdot \lambda \cdot \sqrt{f'_c} \cdot h_{ef}^{1.5} = 24 \cdot 1.0 \cdot \sqrt{4,000} \cdot 9^{1.5} = 40,983 \text{ lb.}$	D.5.2.2 and Eq. (D-6)	Table 8
$N_{\rm cbg} = \frac{496}{729} \cdot 1.0 \cdot 0.76 \cdot 1.0 \cdot 0.61 \cdot 40,983 = \textbf{12,927 lb}.$	-	-
$\phi N_{cbg} = 0.65 \cdot 12,927 = 8,403 \text{ lb.}$	D.4.3(c)	Table 8

Step 4. Check bond strength in tension: $N_{ag} = \frac{A_{Na}}{A_{Na0}} \cdot \psi_{ec,Na} \cdot \psi_{ed,Na} \cdot \psi_{cp,Na} \cdot N_{ba}$	D.5.5.1 Eq. (D-19)	-
$A_{Na} = (2c_{Na} + s)(c_{Na} + c_{a,min})$ $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1,100}} = 10 \cdot 0.5 \cdot \sqrt{\frac{1,570}{1,100}} = 5.97 \text{ in.}$ $A_{Na} = (2 \cdot 7.13 + 4)(7.13 + 2.5) = 135.0 \text{ in}^2$	D.5.5.1 Eq. (D-21)	Table 9
$A_{Na0} = (2c_{Na})^2 = (2 \cdot 5.97)^2 = 142.6 \text{ in}^2$	D.5.5.1 and Eq. (D-20)	-
$\psi_{\text{ec,Na}}$ = 1.0 no eccentricity – loading is concentric	D.5.5.3	-
$\psi_{ed,Na} = \left(0.7 + 0.3 \cdot \frac{c_{a,\text{min}}}{c_{Na}}\right) = \left(0.7 + 0.3 \cdot \frac{2.5}{5.97}\right) = 0.83$	D5.5.4	-
$\psi_{cp,Na} = \frac{\max \left c_{a,\min}; c_{Na} \right }{c_{ac}} = \frac{\max \left 2.5; 5.97 \right }{22.0} = \textbf{0.27}$	D.5.5.5	-
$N_{ba} = \lambda \cdot \tau_{uncr} \cdot \pi \cdot d \cdot h_{ef} = 1.0 \cdot 1,570 \cdot \pi \cdot 0.5 \cdot 9.0 = 22,195 \text{ lb.}$	D.5.5.2 and Eq. (D-22)	Table 9
$N_{ag} = \frac{135.0}{142.6} \cdot 1.0 \cdot 0.83 \cdot 0.27 \cdot 22,195 = $ 4,709 <i>lb.</i>	-	-
$\phi N_{ag} = 0.65 \cdot 4{,}709 = 3{,}061 \text{ lb.}$	D.4.3(c)	Table 9
Step 5. Determine controlling strength:		
Steel Strength $\phi N_{sa} = 26,603 \text{ lb.}$	D.4.1	_
Concrete Breakout Strength $\phi N_{cbg} = 8,403 lb.$	0.7.1	-
Bond Strength $\phi N_{ag} = 3,061 \text{ lb. CONTROLS}$		

FIGURE 6—SAMPLE CALCULATION [POST INSTALLED ANCHORS] (Continued)

Specifications / Assumptions:

Development length for column starter bars

Existing construction (E):

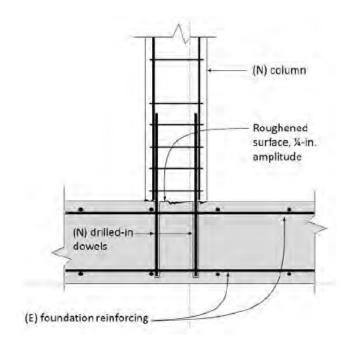
Foundation grade beam 24 wide x 36-in deep., 4 ksi normal weight concrete, ASTM A615 Gr. 60 reinforcement

New construction (N):

18 x 18-in. column as shown, centered on 24-in wide grade beam, 4 ksi normal weight concrete, ASTM A615 Gr. 60 reinforcement, 4 - #7 column bars

The column must resist moment and shear arising from wind loading.

Dimensional Parameters:

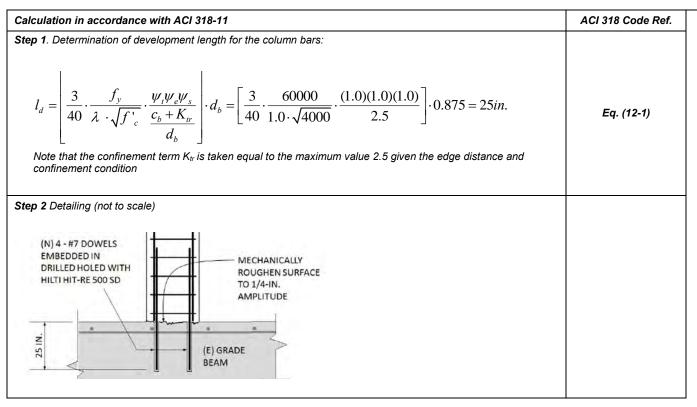

$$d_b = 0.875 \text{ in.}$$

$$\left(\frac{C_b + K_{tr}}{d_b}\right) = 2.5$$

$$\psi_t = 1.0$$

$$\psi_e = 1.0$$

$$\psi_s = 1.0$$



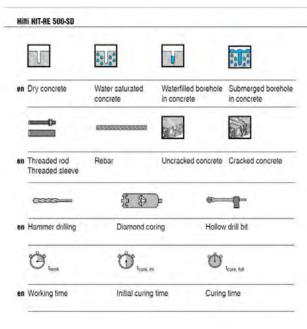
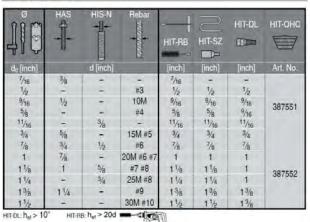
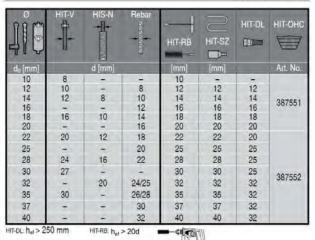
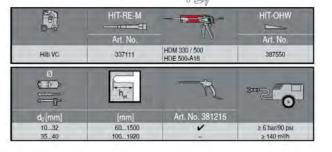
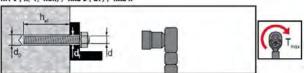



FIGURE 7—SAMPLE CALCULATION [POST-INSTALLED REINFORCING BARS]

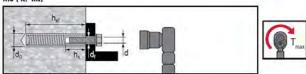



Hilli HIT-RE 500-SD


〕	HIT-RE-M		HIT-OHW
700	Art. No.	1/7	Art. No.
Hilli VC	337111	HDM 330 HDM 500 HDE 500-A18	387550
	h _a .	-M	***
d₀ [inch]	[inch]	Art. No. 381215	
7/16"1 1/8"	23/6"521/2"	~	≥ 6 bar/90 psi @ 6 m³/h
1 1/4"1 1/2"	4"75"		≥ 140 m³/h/≥ 82 CFM

Hilti HIT-RE 500-SD

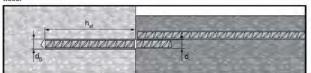
HIT-V (-R, -F, -HCR) / HAS-E (-B7) / HAS-R


HAS / HIT-V

Ø d [inch]	Ød₀ [inch]	h _{er} [inch]	Ød; [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	7/16	23/871/2	7/18	15	20
1/2	9/18	23/410	9/18	30	41
5/8	3/4	31/8121/2	11/16	60	81
3/4	7/8	31/215	13/18	100	136
7/8	1	31/2171/2	15/16	125	169
1	11/8	420	11/6	150	203
11/4	13/8	525	13/8	200	271

HIT-V

Ø d (mm)	Ø d _o [mm]	h _{er} [mm]	Ød _i [mm]	T _{mex} [Nm]
M8	10	60_160	9	10
M10	12	60200	12	20
M12	14	70240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	96480	26	200
M27	30	108540	30	270
M30	35	120600	33	300

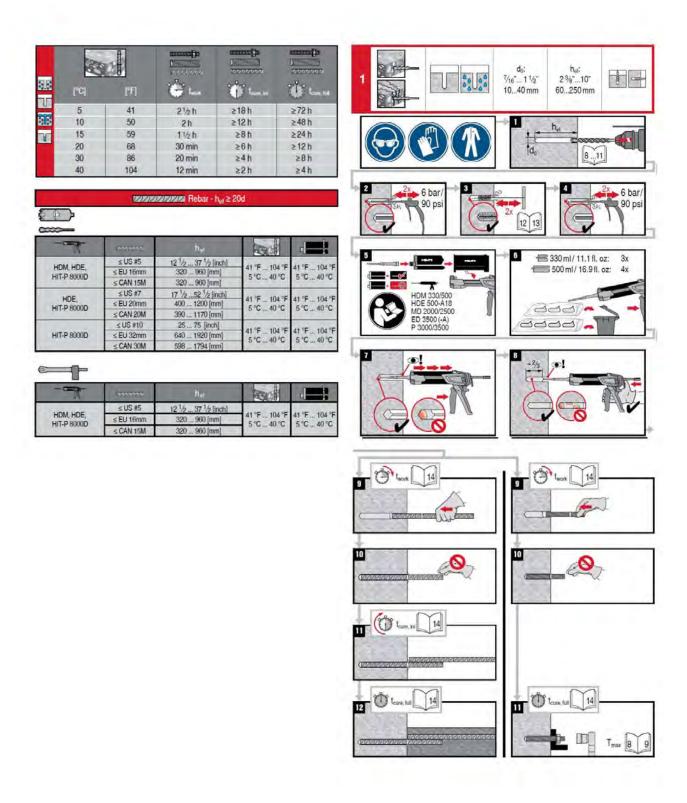

HIS (-N. -RN)

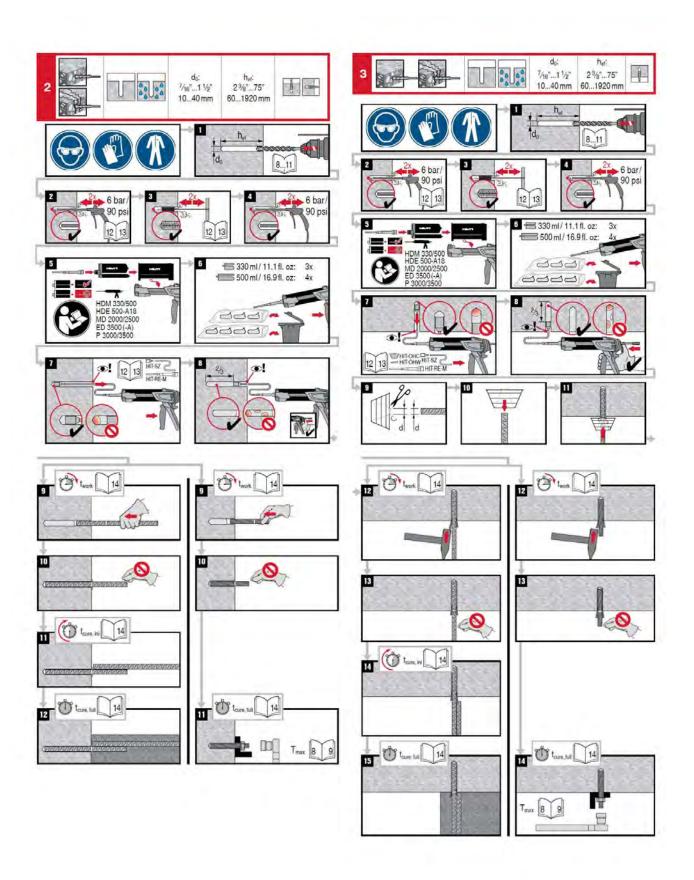
Ø d [inch]	Ød _o [inch]	h _{er} [inch]	Ød, [inch]	h. [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	11/16	43/8	7/16	3/815/16	15	20
1/2	7/8	5	9/16	1/213/16	30	41
5/8	11/8	63/4	11/16	5/811/2	60	81
3/4	11/4	81/8	13/16	3/417/8	100	136

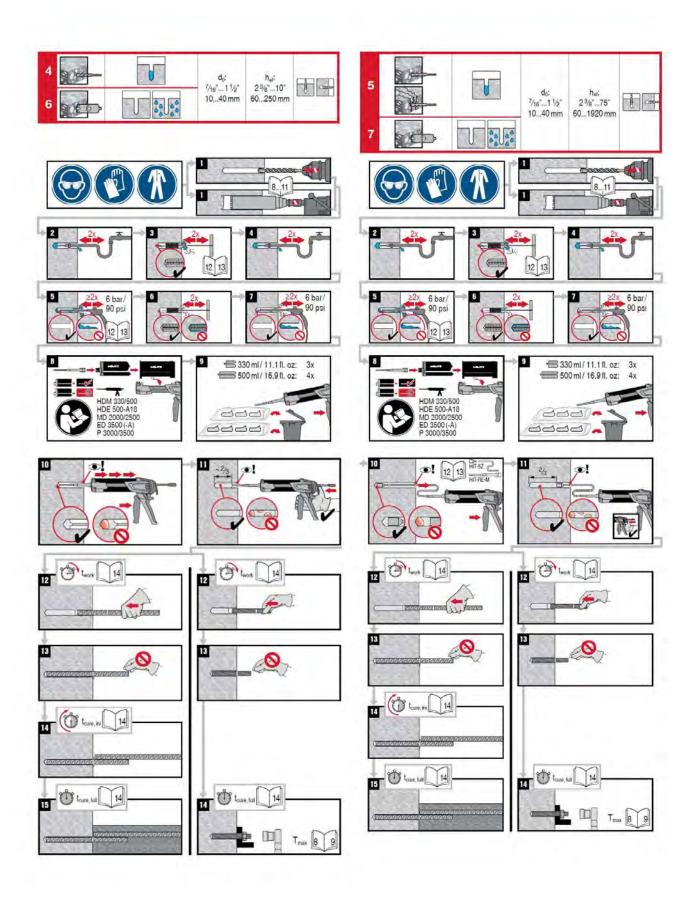
Ø d [mm]	Ø d _o [mm]	h _{et} [mm]	Ø d _i [mm]	h _e [mm]	T _{max} [Nm]
M8	14	90	9	820	10
M10	18	110	12	1025	20
M12	22	125	14	1230	40
M16	28	170	18	1640	80
M20	32	205	22	2050	150

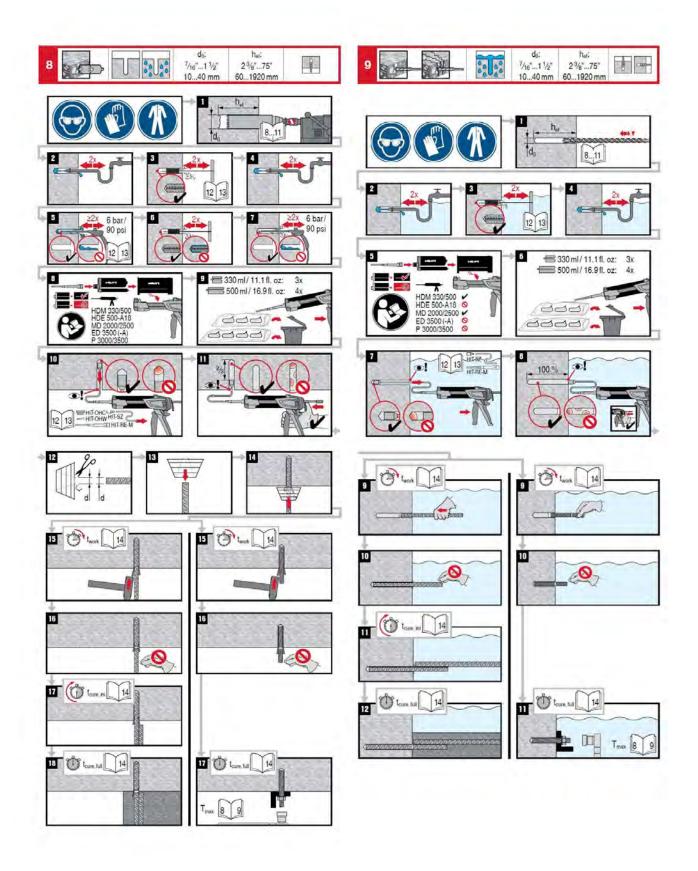
Rebar

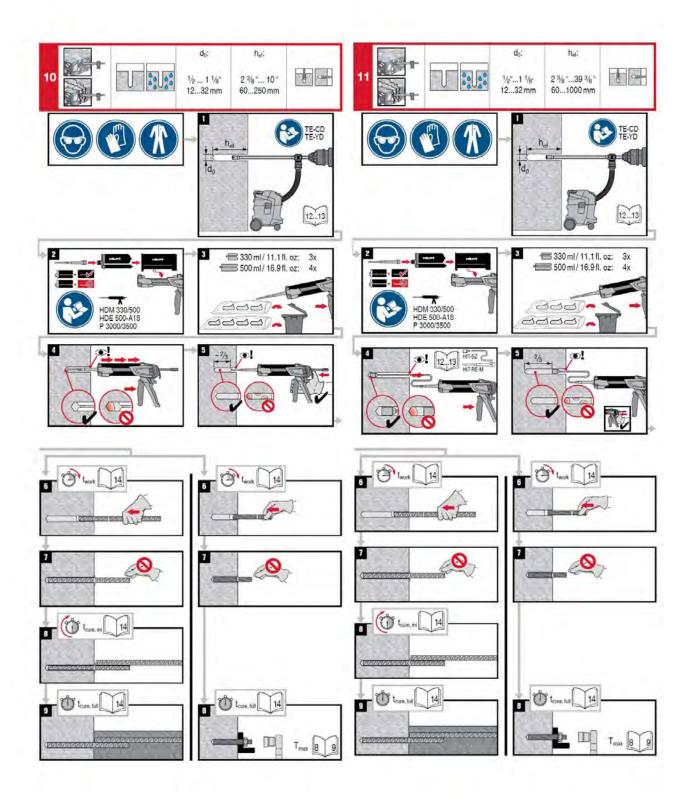
US Rebar

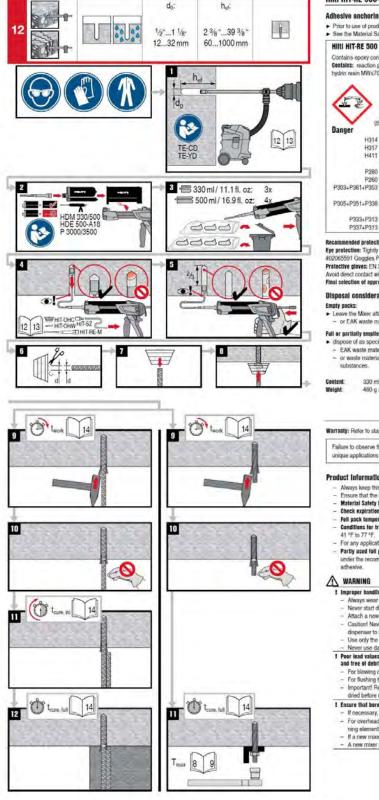

20000000	Ø d ₀	hei
d	[inch]	[inch]
#3	1/2	23/8221/2
#4	5/8	23/430
#5	3/4	31/8371/2
#6	7/8	31/215
W.O.	1	1545
#7	1	31/2171/2
m.r	1 1/8	171/2521/2
#8	1 1/8	420
#0	11/4	2060
#9	13/8	41/2671/2
#10	1 1/2	575


CA Rebar


מממממממ	Ø d ₀	h _{et}
	[inch]	[mm]
10 M	9/16	70678
15 M	3/4	80960
20 M	1	901170
25 M	1 1/4 (32 mm)	1011512
30 M	11/2	1201794


EU Rebar


Voodoova Ø d [mm]	Ø d _o [mm]	h _{et} [mm]
8	12	60480
10	14	60600
12	16	70720
14	18	75840
16	20	80960
18	22	851080
20	25	901200
22	28	951320
24	32	96,1440
25	32	1001500
26	35	1041560
28	35	1121680
30	37	1201800
32	40	1281920



Hilti HIT-RE 500-SD

Adhesive anchoring system for rebar and anchor fastenings in concrete

- Prior to use of product, follow the instructions for use and the legally obligated safety precautions.
- See the Material Safety Data Sheet for this product.

Contains epoxy constituents. May produce an allergic reaction.(A)

Centalist: reaction product: bisphenol-A-(epichlor/rydnin) epoxy resin MW ≤ 700 (A), reaction product: bisphenol-F epichlor-trydnin resin MWs700 (A), m-xytenediamine (B)

H314 Causes severe skin burns and eye dama

May cause an allergic skin reaction.(A,B)
Toxic to aquatic life with long lasting effects.(A) H411 Wear protective gloves/protective clothing/eye protection/face protection P280

Do not breathe vapours.

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with P303+P361+P353

TE IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if pres and easy to do. Continue rinsing. P305+P351+P338

If skin irritation or rash occurs: Get medical advice/attention. P3334P313 P3374P313 If eye irritation persists: Get medical advice/attention.

Eye protection: Tightly sealed safety glasses e.g.: #02065449 Safety glasses PP EY-CA NCH clear; #02065591 Goggles PP EY-HA R HC/AF clear;

Protective gloves: EN 374 / EN 388, Material of gloves: Nimie nubber, NBR Avoid direct contact with the chemical/ the product/ the preparation by organizational Final selection of appropriate protective equipment is in the responsibility of the user

Empty packs:

Leave the Mixer attached and dispose of via the local Green Dot collecting system. - or EAK waste material code 15 01 02 plastic packaging

- Full or partially emptied packs:

 dispose of as special waste in accordance with official regulations.
- EAK waste material code: 20 01 27' paint, Inks, adhesives and resins containing dangerous substances.
 or waste material code: EAK 08 04 09' waste adhesives and sealants containing organic solvents or other dangerous substances.

330 ml / 11.1 fl.oz 460 g / 16.9 oz

500 ml / 16.9 fl.oz 727 g / 25,6 oz

Hilti HIT-RE 500-SD

Warranty: Refer to standard Hilti terms and conditions of sale for warranty information.

Failure to observe these installation instructions, use of non-Hilli anchors, poor or questionable concrete conditions, or unique applications may affect the reliability or performance of the fasteni

Product Information

- Always keep this instruction for use together with the product.
 Ensure that the instruction for use is with the product when it is given to other persons.
 Material Safety Data Sheet: Review the MSDS before use.
- Check expiration date: See expiration date imprint on follpack manifold (month/year). Do not use expired product.
- Fell pack temperature during usage: +5 °C to 40 °C / 41 °F to 104 °F.

 Conditions for transport and storage: Keep in a cool, dry and dark place between
- For any application not covered by this document / beyond values specified, please contact Hilti.
- Partly used fell packs must be used up within 4 weeks. Leave the mover attached on the fell pack manifold and store under the recommended storage conditions. If reused, attach a new mixer and discard the initial quantity of anchor

⚠ WARNING

! Improper handling may cause mortar splashes. Eye contact with mortar may cause irreversible eye damage!

- Always wear tightly sealed safety glasses, gloves and protective Never start dispensing without a mixer properly screwed on. Attach a new mixer prior to dispensing a new foil pack (snug fit) es and protective clothes before handling the mortar

- Caution! Never remove the mixer while the foil pack system is under pressure. Press the release button of the dispenser to avoid mortar splashing.
 Use only the type of mixer supplied with the adhesive, Do not modify the mixer in any way.
 Never use damaged foil packs and/or damaged or unclean toil pack holders.

! Poor lead values / potential failure of fastening points due to inadequate berehole cleaning. The boreholes must be dry and free of debris, dust, water, ice, oil, grease and other contaminants prior to adhestive injection.

- For blowing out the borehole blow out with oil tree air until return air stream is free of noticeable dust For flushing the borehole flush with water line pressure until water runs clear.
- Important! Remove all water from the borehole and blow out with oil free compressed air until borehole is completely dried before mortar injection (not applicable to hammer drilled hole in underwater application).

! Ensure that boreholes are filled from the back of the boreholes without forming air voids. If necessary, use the accessories / extensions to reach the back of the borehole.

- For overhead applications use the overhead accessories HT-SZ / IP and take special care when inserting the faste-ning element. Excess adhesive may be forced out of the borehole. Make sure that no mortar drips onto the installer.

 If a new mixer is installed onto a previously-opened foil pack, the first trigger pulls must be discarded.
- A new mixer must be used for each new foil pack.

ICC-ES Evaluation Report

ESR-2322 FBC Supplement

Reissued April 2016

This report is subject to renewal April 2017.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.
7250 DALLAS PARKWAY, SUITE 1000
PLANO, TEXAS 75024
(918) 872-8000
www.us.hilti.com
HiltiTechEng@us.hilti.com

EVALUATION SUBJECT:

HILTI HIT-RE 500-SD ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT-RE 500-SD Adhesive Anchoring System, recognized in ICC-ES master evaluation report ESR-2322, has also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2014 and 2010 Florida Building Code—Building
- 2014 and 2010 Florida Building Code—Residential

2.0 CONCLUSIONS

The Hilti HIT-RE 500-SD Adhesive Anchoring System, described in Sections 2.0 through 7.0 of the master evaluation report ESR-2322, complies with the 2014 and 2010 *Florida Building Code—Building* and the 2014 and 2010 *Florida Building Code—Residential*, provided the design and installation are in accordance with the 2012 *International Building Code* (IBC) provisions noted in the master report, and the following conditions:

- Design wind loads must be based on Section 1609 of the 2014 or 2010 Florida Building Code—Building or Section 301.2.1.1 of the 2014 or 2010 Florida Building Code—Residential, as applicable.
- Load combinations must be in accordance with Section 1605.2 or Section 1605.3 of the 2014 or 2010 Florida Building Code—Building, as applicable.

Use of the Hilti HIT-RE 500-SD Adhesive Anchoring System with stainless steel threaded rod materials and reinforcing bars and stainless steel Hilti HIS-RN inserts has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the 2014 and 2010 Florida Building Code—Building and the 2014 and 2010 Florida Building Code—Residential when the following conditions are met:

• The design wind loads for use of the anchors in the High-velocity Hurricane Zone are based on Section 1620 of the 2014 or 2010 Florida Building Code—Building, as applicable.

 When complying with the 2010 Florida Building Code—Building or the 2010 Florida Building Code—Residential, reinforcing bars must be in accordance with Section 1922.4 of the 2010 Florida Building Code—Building.

Use of the Hilti HIT-RE 500-SD Adhesive Anchoring System with carbon steel threaded rod materials and reinforcing bars, carbon steel Hilti HIT-Z anchor rods and carbon steel Hilti HIS-N inserts for compliance with the High-velocity Hurricane Zone provisions of the 2014 or 2010 Florida Building Code—Building and the 2014 or 2010 Florida Building Code—Residential has not been evaluated and is outside the scope of the supplemental report.

For products falling under Florida Rule 9N-3, verification that the report holder's quality-assurance program is audited by a quality-assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the master report, reissued April 2016, revised June 2016.