

The following excerpt are pages from the North American

Product Technical Guide Volume 3: Modular Support Systems

Technical Guide, Edition 1.

Please refer to the publication in its entirety for complete details on this product including load values, approvals/listings, general suitability, finishes, quality, etc.

To consult directly with a team member regarding our modular support system products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or HNATechnicalServices@hilti.com

CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

3.0 MODULAR SUPPORT SYSTEM 3.2.4 MT SPLICE CONNECTORS

MT-ES-60

Description

Extension splice for channel.

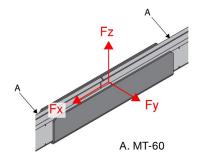
Material Specifications

Standard ¹	Grade ¹	F _y , ksi (MPa)	F _u , ksi (MPa)
GB/T 700	Q235 B	34.08 (235)	53.66 (370)

^{1.} Mechanical properties of GB/T 700 Grade Q235 B meet or exceed the mechanical properties of ASTM A1011 SS Grade 33.

Corrosion Protection Electro-Galvanized (EG)

MT-ES-60


Hot-Dipped Galvanized (HDG)

MT-ES-60 OC

Ordering Information

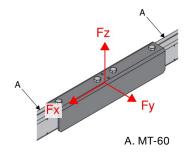

Description	Weight Per Piece lbs (kg)	Quantity Piece(s)	Item No.
MT-ES-60	5.45 (2.47)	8	2332415
MT-ES-60 OC	5.45 (2.47)	8	2332416

Figure 63 - Splice Extension for MT Channel

^{*}Splice connector is attached to MT Channels using 4 x MT-CTAB screws.

Figure 64 - Splice Extension for MT Channel

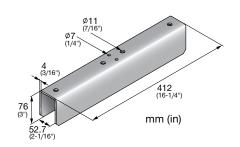


Table 183 - Allowable Strength Design (ASD) Load Data^{1,2,3}

F _x	F	F _z
lb (kN)	lb (kN)	lb (kN)
2,320	200	1,655
(10.33)	(0.90)	(7.37)

- Minimum safety factor, Ω , for tabulated values is 2.6.
- Multiply tabulated values by 1.5 to obtain minimum Load and Resistance Factor Design (LRFD) values.
- See Figure 63.

Table 184 - Limit State Design (LSD) Load Data^{1,2}

F _x	F _y	F _z
lb (kN)	lb (kN)	lb (kN)
3,230	265	2,300
(14.37)	(1.19)	(10.24)

- 1. Maximum resistance factor, ϕ , for tabulated values is 0.55.
- 2. See Figure 63.

Table 185 - Allowable Strength Design (ASD) Load Data^{1,2,3}

F _x	F _y	F _z
lb (kN)	lb (kN)	lb (kN)
835	80	1,320
(3.72)	(0.37)	(5.88)

- 1. Minimum safety factor, Ω, for tabulated values is 2.65.
- Multiply tabulated values by 1.5 to obtain minimum Load and Resistance Factor Design (LRFD) values.
- 3. See Figure 64.

Table 186 - Limit State Design (LSD) Load Data^{1,2}

F _x	F _y	F _z
lb (kN)	lb (kN)	lb (kN)
1,055	95	1,705
(4.70)	(0.44)	(7.59)

- Maximum resistance factor, φ, for tabulated values is 0.5.

97 2023