

The following excerpt are pages from the North American

Product Technical Guide Volume 3: Modular Support Systems

Technical Guide, Edition 1.

Please refer to the publication in its entirety for complete details on this product including load values, approvals/listings, general suitability, finishes, quality, etc.

To consult directly with a team member regarding our modular support system products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or HNATechnicalServices@hilti.com

CA: 1-800-363-4458, ext. 6 or <a href="mailto:cATechnicalServices@hilti.com">CATechnicalServices@hilti.com</a>



# 3.0 MODULAR SUPPORT SYSTEM 3.2.2 MT BASE CONNECTORS MT-B-GXL S3 OC

# **Description**

Base plate for fixation of MT-90 and MT-100 girder structures to 9.1"-12.8" steel flange widths.

#### **Material Specifications**

| Standard <sup>1</sup> | Grade <sup>1</sup> | F <sub>y</sub> , ksi (MPa) | F <sub>u</sub> , ksi (MPa) |
|-----------------------|--------------------|----------------------------|----------------------------|
| GB/T 1591             | Q355 B             | 51.49 (355)                | 68.17 (470)                |

Mechanical properties of GB/T 1591 Grade Q355 B meet or exceed the mechanical properties of ASTM A1011 SS Grade 50.

# **Corrosion Protection**

**Hot-Dipped Galvanized (HDG)** 

MT-B-GXL S3 OC

#### **Ordering Information**

| Description    | Weight Per Piece<br>Ibs (kg) | Quantity<br>Piece(s) | Item No. |
|----------------|------------------------------|----------------------|----------|
| MT-B-GXL S3 OC | 23.81 (10.8)                 | 2                    | 2272108  |

Figure 22 - MT Girder Sandwiched to Steel

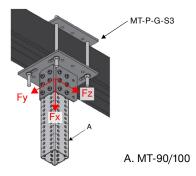
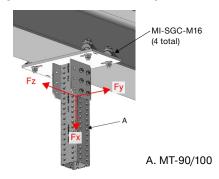
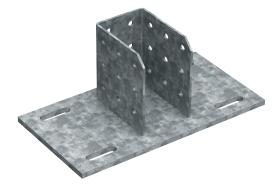





Figure 23 - MT Girder Clamped to Steel





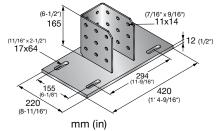



Table 101 - Allowable Strength Design (ASD) Load Data<sup>1,2,3,4,5</sup>

| F <sub>x</sub><br>lb (kN) | F ⁵<br>lb (kN) | F <sup>5</sup><br>lb (kN) | M <sub>y</sub><br>lb ft (kN m) | M <sub>z</sub><br>lb ft (kN m) |
|---------------------------|----------------|---------------------------|--------------------------------|--------------------------------|
| 8,440                     | 3,345          | 3,345                     | 3,700                          | 4,450                          |
| (37.54)                   | (14.9)         | (14.9)                    | (5.02)                         | (6.04)                         |

- . Minimum safety factor,  $\Omega$ , for tabulated values is 2.0.
- 2. Multiply tabulated values by 1.5 to obtain minimum Load and Resistance Factor Design (LRFD) values.
- 3. Tabulated values require that minimum grade 8.8 threaded rods must be used.
- Tabulated values are for assembly shown in Figure 22. Design Professional is responsible for checking strength of supporting steel member.
- Tabulated values are based on friction that is provided mechanically and not due to gravity loads.

### Table 102 - Limit State Design (LSD) Load Data<sup>1,2,3,4</sup>



| F <sub>x</sub> | F <sup>4</sup> | F <sub>z</sub> <sup>4</sup> | M <sub>y</sub> | M <sub>z</sub> |
|----------------|----------------|-----------------------------|----------------|----------------|
| lb (kN)        | lb (kN)        | lb (kN)                     | lb ft (kN m)   | lb ft (kN m)   |
| 12,650         | 5,035          | 5,035                       | 5,240          | 6,310          |
| (56.28)        | (22.4)         | (22.4)                      | (7.11)         | (8.56)         |

- Maximum resistance factor, Φ, for tabulated values is 0.75.
- Tabulated values require that minimum grade 8.8 threaded rods must be used.
- Tabulated values are for assembly shown in Figure 22. Design Professional is responsible for checking strength of supporting steel member.
- Tabulated values are based on friction that is provided mechanically and not due to gravity loads.

#### Table 103 - Allowable Strength Design (ASD) Load Data<sup>1,2,3,4</sup>

| F <sub>x</sub> | F <sup>4</sup> | F <sup>4</sup> | M <sub>y</sub> | M <sub>z</sub> |
|----------------|----------------|----------------|----------------|----------------|
| lb (kN)        | lb (kN)        | lb (kN)        | lb ft (kN m)   | lb ft (kN m)   |
| 8,440          | 1,545          | 1,545          | 3,655          | 4,450          |
| (37.54)        | (6.88)         | (6.88)         | (4.96)         | (6.04)         |

- 1. Minimum safety factor,  $\Omega$ , for tabulated values is 2.0.
- Multiply tabulated values by 1.5 to obtain minimum Load and Resistance Factor Design (LRFD) values.
   Tabulated values are for assembly shown in Figure 23. Design Professional is responsible for
- Tabulated values are for assembly shown in Figure 23. Design Professional is responsible for checking strength of supporting steel member.
- Tabulated values are based on friction that is provided mechanically and not due to gravity loads...

## Table 104 - Limit State Design (LSD) Load Data<sup>1,2,3</sup>



| F <sub>x</sub> | F <sub>y</sub> <sup>3</sup> | F <sub>z</sub> <sup>3</sup> | M <sub>y</sub> | M <sub>z</sub> |
|----------------|-----------------------------|-----------------------------|----------------|----------------|
| lb (kN)        | lb (kN)                     | lb (kN)                     | lb ft (kN m)   | lb ft (kN m)   |
| 12,650         | 2,315                       | 2,315                       | 5,240          | 6,310          |
| (56.28)        | (10.3)                      | (10.3)                      | (7.11)         | (8.56)         |

- Maximum resistance factor, Φ, for tabulated values is 0.75.
- Tabulated values are for assembly shown in Figure 23. Design Professional is responsible for checking strength of supporting steel member.
- 3. Tabulated values are based on friction that is provided mechanically and not due to gravity loads.

2023 **65**