

The following excerpt are pages from the North American
Product Technical Guide Volume 3: Modular Support Systems
Technical Guide, Edition 1.

Please refer to the publication in its entirety for complete details on this product including load values, approvals/listings, general suitability, finishes, quality, etc.

To consult directly with a team member regarding our modular support system products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or HNATechnicalServices@hilti.com

CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

3.0 MODULAR SUPPORT SYSTEM

3.2.6 MT ANGLE BRACES AND FITTINGS

MT-B-GL AB OC

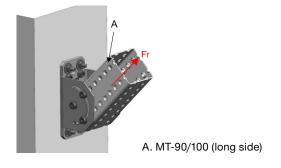
Description

Adjustable angle brace base for MT-90 or MT-100 girder to MT, concrete, or steel (X-BT/S-BT/F-BT).

Material Specifications

Standard ¹	Grade ¹	F _y , ksi (MPa)	F _u , ksi (MPa)
GB/T 1591	Q355 B	51.49 (355)	68.17 (470)

Mechanical properties of GB/T 1591 Grade Q355 B meet or exceed the mechanical properties of ASTM A1011 SS Grade 50.


Corrosion Protection Hot-Dipped Galvanized (HDG)

MT-B-GL AB OC

Ordering Information

Description	Weight Per Piece lbs (kg)	Quantity Piece(s)	Item No.
MT-B-GL AB OC	5.20 (2.36)	6	2353811

Figure 76 - MT Girder-to-Concrete

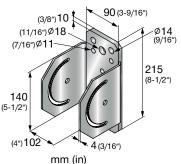
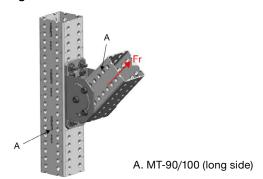


Table 209 - Allowable Strength Design (ASD) Load Data^{1,2,3,4}

F _r Ib (kN)
5,035 (22.40)

- Safety factor, Ω, for tabulated values is 2.5.
- Multiply tabulated values by 1.5 to obtain minimum Load and Resistance Factor Design (LRFD) values.
- Load values are for base connector only. Design professional is responsible for checking concrete and fastener strength.
- 4. See Figure 76.


Table 210 - Limit State Design (LSD) Load Data^{1,2,3}

F _r lb (kN)
7,125
(31.70)

- 1. Resistance factor, φ, for tabulated values is 0.6.
- 2. Load values are for base connector only. Design professional is responsible for checking concrete and fastener strength.
- 3. See Figure 76.

Figure 77 - MT Girder-to-Girder

Table 211 - Allowable Strength Design (ASD) Load Data^{1,2,3}

F _r lb (kN)	
3,145 (14.00)	

- 1. Safety factor, Ω , for tabulated values is 2.2.
- Multiply tabulated values by 1.5 to obtain minimum Load and Resistance Factor Design (LRFD) values.
- 3. See Figure 77.

Table 212 - Limit State Design (LSD) Load Data^{1,2}

F _r Ib (kN)
4,450 (19.80)

- Resistance factor, φ, for tabulated values is 0.65.
- 2. See Figure 7

2023