

STC Table: Head-of-Wall Sound Assemblies with CFS-TTS Top Track Seal						
Stud Framing	Top Track	Wall Assembly	Joint Filler	Joint Width	Baseline STC*	Tested STC
3-5/8" 25-ga steel (24 in/OC)	20-ga slotted slip track	1 layer - 5/8" Type X gypsum each side	CFS-TTS Top Track Seal	1/2"	50 TL20-222	49 TL20-221
			None - Open Joint	1/2"	53 TL20-218	49 TL20-217
3-5/8" 25-ga steel (24 in/OC)	20-ga slotted slip track	2 layers - 5/8" Type X gypsum each side	CFS-TTS Top Track Seal	1/2"	53 TL20-218	53 TL20-220
			CFS-TTS Top Track Seal (backer rod install)	1/2"	53 TL20-218	53 TL20-219
3-5/8" 25-ga steel (24 in/OC) double wall w/ 1" air gap	20-ga slotted slip track	1 layer - 5/8" Type X gypsum each side	CFS-TTS Top Track Seal	1/2"	64 TL20-208	63 TL20-207
3-5/8" 25-ga steel (24 in/OC) double wall w/ 1" air gap	20-ga slotted slip track	2 & 1 layer on other side - 5/8" Type X gypsum	CFS-TTS Top Track Seal	1/2"	66 TL20-210	66 TL20-209
			None - Open Joint	1/2"	68 TL20-212	52 TL20-213
3-5/8" 25-ga steel (24 in/OC) double	20-ga slotted	2 layers - 5/8" Type X	CP 606 Sealant (5/8" depth)	1/2"	68 TL20-212	68 TL20-216
wall w/ 1" air gap	slip track	gypsum each side	CFS-TTS Top Track Seal	1/2"	68 TL20-212	68 TL20-211
			CFS-TTS Top Track Seal (backer rod install)	1/2"	68 TL20-212	68 TL20-215

Notes:

1.) Sound assemblies are certified by Western Electro-Acoustic Laboratory

2.) See STC report hyperlinks for detailed requirements of wall construction assembly

3.) Test were performed in accordance with ASTM E 90-09 (2016)

*Baseline STC tested systems comprise of the same wall assembly components as the Tested STC system, but do not contain a head-of-wall joint

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-207

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	3 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a double steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and Hilti CFS-TTS Firestop Top Track Seal at the head-of-wall joint.

Source Room Layers	Source Framing	Air Gap	Receiving Framing	Receiving Room Layers
1 layer 16mm (5/8 inch) Type 'X' gypsum board	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	25 mm (1 inch)	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	1 layer 16mm (5/8 inch) Type 'X' gypsum board

- On both sides, the 92 mm (3-5/8 inch) 25-gauge steel studs were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frames were isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On both sides, one layer of 16 mm (5/8 inch) Type 'X' gypsum board was screwed to the studs using 32 mm (1-1/4 inch) long #6 drywall screws spaced at 203 mm (8 inches) O.C. at the perimeter and 305 mm (12 inches) in the field.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with Hilti CFS-TTS Firestop Top Track Seal. The Hilti CFS-TTS Firestop Top Track Seal was installed per manufacturer's instructions.
- All gypsum board was oriented vertically with joints staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 241 mm (9-1/2 inches) thick.

F

STING

WESTERN ELECTRO - ACOUSTIC LABORATORY

• RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-207

CALIBRATION

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 3 March 2020

•

23 March 2020

The overall weight of the assembly was estimated to be 161.2 kg (355.5 lbs.) for a calculated surface density of 27.1 kg/m² (5.6 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 47. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 63.

Approved:

Stephen A. Martin, Ph.D., P.E Laboratory Director

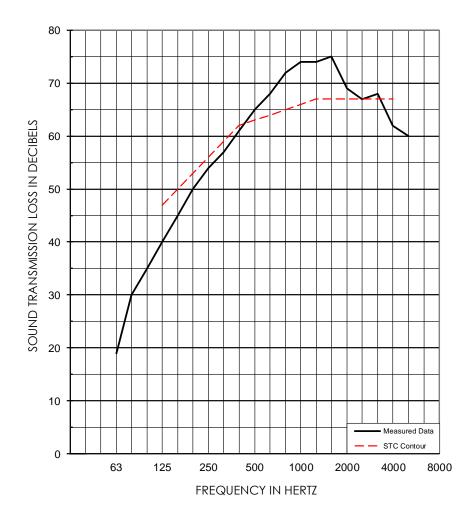
2

Raul Martinez Acoustical Test Technician

ΤE

S T I N G

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-207

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	3 March 2020

•

1/3 OC	T BAND	CNTR FREQ	63	80	100	125	160	200	250	315	400	500
TL in d	В		19	30	35	40	45	50*	54*	57*	61*	65*
95% C	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
defici	encies					(7)	(5)	(3)	(2)	(2)	(1)	
1/3 OC	T BAND	CNTR FREQ	630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in d	В		68*	72*	74*	74*	75*	69*	67	68	62	60
95% C	onfiden	ce in dB	0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	encies								(0)		(5)	
EWR	OITC	* Minimum estimate of		Tes	t Date:	03 Mar	ch 2020	0				STC
63	47	transmission loss. Measurement limited by	Sp	pecimer	n Area:	64 sq.f	t.					63
		filler wall. Actual TL will be equal or		Tempe	rature:	68.9 de	eg. F					(25)
		greater than value reported.	Rela	tive Hu	midity:	30 %						

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-208

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	4 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a double steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and duct seal putty at the head-of-wall joint.

Source Room Layers	Source Framing	Air Gap	Receiving Framing	Receiving Room Layers
	92 mm (3-5/8 inch) 25-gauge steel		92 mm (3-5/8 inch) 25-gauge steel	
1 layer	studs and 20-gauge slotted slip		studs and 20-gauge slotted slip	1 layer
16 mm (5/8 inch)	track spaced 610 mm (24 inches) on	25 mm	track spaced 610 mm (24 inches) on	16 mm (5/8 inch)
Type 'X' gypsum	center with R-13 batt insulation in	(1 inch)	center with R-13 batt insulation in	Type 'X' gypsum
board	the cavity and duct seal putty at the		the cavity and duct seal putty at the	board
	13 mm (1/2 inch) head-of-wall joint		13 mm (1/2 inch) head-of-wall joint	

On both sides, the 92 mm (3-5/8 inch) 25-gauge steel studs were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frames were isolated from the test opening with 6 mm (1/4 inch) neoprene pads.

- On both sides, one layer of 16 mm (5/8 inch) Type 'X' gypsum board was screwed to the studs using 32 mm (1-1/4 inch) long #6 drywall screws spaced at 203 mm (8 inches) O.C. at the perimeter and 305 mm (12 inches) in the field.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with duct seal putty.
- All gypsum board was oriented vertically with joints staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 241 mm (9-1/2 inches) thick.
- The overall weight of the assembly was estimated to be 161.2 kg (355.5 lbs.) for a calculated surface density of 27.1 kg/m² (5.6 lbs./ft²).

WESTERN ELECTRO - ACOUSTIC LABORATORY

• RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-208

CALIBRATION

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

•

23 March 2020

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 47. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 64.

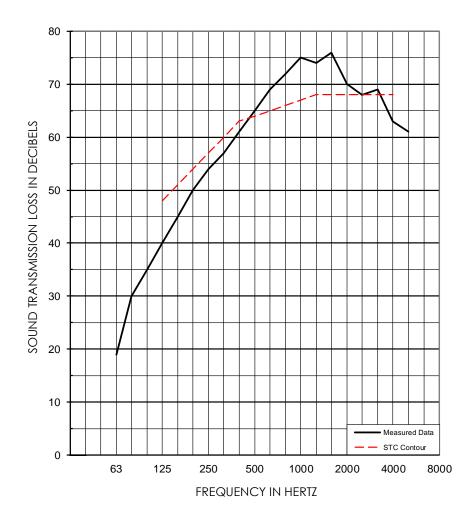
Approved:

Stephen A. Martin, Ph.D., P.I Laboratory Director

Raul Martinez Acoustical Test Technician

TESTING

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-208

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

•

1/3 OC	T BAND	CNTR FREQ	63	80	100	125	160	200	250	315	400	500
TL in d	В		19	30	35	40	45	50	54*	57*	61*	65*
95% Co	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
defici	encies					(8)	(6)	(4)	(3)	(3)	(2)	
1/3 OC	T BAND	CNTR FREQ	630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in d	В		69*	72*	75*	74*	76*	70*	68	69	63	61
95% Co	onfiden	ce in dB	0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	encies								(0)		(5)	
EWR	OITC	* Minimum estimate of		Tes	t Date:	04 Mar	ch 2020	C				STC
63	47	transmission loss. Measurement limited by	Sp	pecimer	n Area:	64 sq.f	t.					64
		filler wall. Actual TL will be equal or		Tempe	rature:	65.8 de	eg. F					(31)
		greater than value reported.	Rela	tive Hu	midity:	30 %						

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-209

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
4 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a double steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and Hilti CFS-TTS Firestop Top Track Seal at the head-of-wall joint.

Source Room Layers	Source Framing	Air Gap	Receiving Framing	Receiving Room Layers
2 layers 16 mm (5/8 inch) Type 'X' gypsum board	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	25 mm (1 inch)	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	1 layer 16mm (5/8 inch) Type 'X' gypsum board

- On both sides, the 92 mm (3-5/8 inch) 25-gauge steel studs were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frames were isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On the source side, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - \circ $\;$ Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On the receiving side, one layer of 16 mm (5/8 inch) Type 'X' gypsum board was screwed to the studs using 32 mm (1-1/4 inch) long #6 drywall screws spaced at 203 mm (8 inches) O.C. at the perimeter and 305 mm (12 inches) in the field. The gypsum board was oriented vertically.

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-209

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	4 March 2020

23 March 2020

- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with Hilti CFS-TTS Firestop Top Track Seal. The Hilti CFS-TTS Firestop Top Track Seal was installed per manufacturer's instructions.
- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 257 mm (10-1/8 inches) thick.
- The overall weight of the assembly was estimated to be 225.1 kg (496.3 lbs.) for a calculated surface density of 37.9 kg/m² (7.8 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 51. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 66.

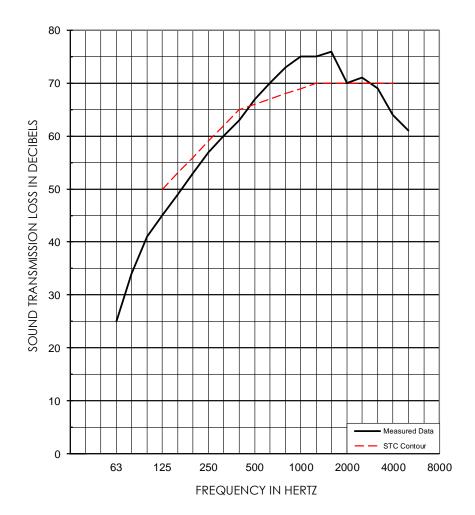
Approved:

Stephen A. Martin, Ph.D., Laboratory Director

Raul Martinez Acoustical Test Technician

TESTING

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-209

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

•

1/3 OC	t Band	CNTR FREQ	63	80	100	125	160	200	250	315	400	500
TL in d	В		25	34*	41*	45*	49*	53*	57*	60*	63*	67*
95% Co	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
defici	encies					(5)	(4)	(3)	(2)	(2)	(2)	
1/3 OCT BAND CNTR FREQ		CNTR FREQ	630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in d	TL in dB		70*	73*	75*	75*	76*	70*	71*	69	64	61
95% Co	onfiden	ce in dB	0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	encies							(0)		(1)	(6)	
EWR	ΟΙΤΟ	* Minimum estimate of		Tes	t Date:	04 March 2020						
66	51	transmission loss. Measurement limited by	Sp	becimer	n Area:	64 sq.ft.						66
		filler wall. Actual TL will be equal or		Tempe	rature:	65.8 de	eg. F					(25)
		greater than value reported.	Rela	Relative Humidity:		30 %						

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-210

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
4 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a double steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and duct seal putty at the head-of-wall joint.

TEST CO	ONFIGL	JRATION
---------	--------	---------

Source Room Layers	Source Framing	Air Gap	Receiving Framing	Receiving Room Layers
	92 mm (3-5/8 inch) 25-gauge steel		92 mm (3-5/8 inch) 25-gauge steel	
2 layers	studs and 20-gauge slotted slip		studs and 20-gauge slotted slip	1 layer
16 mm (5/8 inch)	track spaced 610 mm (24 inches) on	25 mm	track spaced 610 mm (24 inches) on	16 mm (5/8 inch)
Type 'X' gypsum	center with R-13 batt insulation in	(1 inch)	center with R-13 batt insulation in	Type 'X' gypsum
board	the cavity and duct seal putty at the		the cavity and duct seal putty at the	board
	13 mm (1/2 inch) head-of-wall joint		13 mm (1/2 inch) head-of-wall joint	

On both sides, the 92 mm (3-5/8 inch) 25-gauge steel studs were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frames were isolated from the test opening with 6 mm (1/4 inch) neoprene pads.

- On the source side, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - \circ $\;$ Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On the receiving side, one layer of 16 mm (5/8 inch) Type 'X' gypsum board was screwed to the studs using 32 mm (1-1/4 inch) long #6 drywall screws spaced at 203 mm (8 inches) O.C. at the perimeter and 305 mm (12 inches) in the field. The gypsum board was oriented vertically.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with duct seal putty.

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-210

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

23 March 2020

- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 257 mm (10-1/8 inches) thick.
- The overall weight of the assembly was estimated to be 225.1 kg (496.3 lbs.) for a calculated surface density of 37.9 kg/m² (7.8 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 51. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 66.

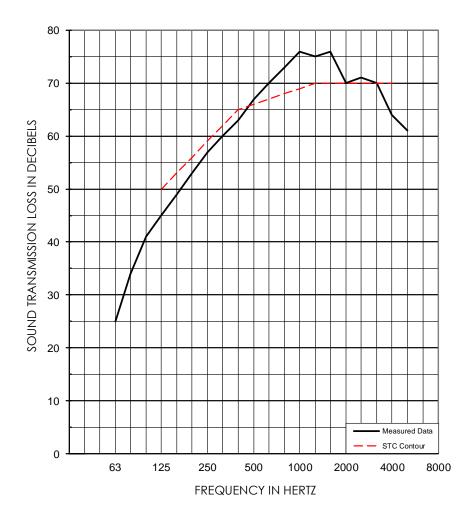
Approved:

Stephen A. Martin, Ph.D., P.E Laboratory Director

Raul Martinez Acoustical Test Technician

TESTING

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-210

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

•

1/3 OC	T BAND	CNTR FREQ	63	80	100	125	160	200	250	315	400	500
TL in d	В		25	34*	41*	45*	49*	53*	57*	60*	63*	67*
95% C	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
defici	encies					(5)	(4)	(3)	(2)	(2)	(2)	
1/3 OCT BAND CNTR FREQ		CNTR FREQ	630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in d	В		70*	73*	76*	75*	76*	70*	71*	70	64	61
95% C	onfiden	ce in dB	0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	encies							(0)		(0)	(6)	
EWR	OITC	* Minimum estimate of		Tes	t Date:	04 March 2020						STC
66	51	transmission loss. Measurement limited by	Sp	Specimen Area: 64 sq.ft.								66
		filler wall. Actual TL will be equal or Te		Tempe	rature:	e: 65.8 deg. F						(24)
		greater than value reported.	Relative Humidity:			30 %						

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-211

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
4 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a double steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and Hilti CFS-TTS Firestop Top Track Seal at the head-of-wall joint.

Source Room Layers	Source Framing	Air Gap	Receiving Framing	Receiving Room Layers
2 layers 16 mm (5/8 inch) Type 'X' gypsum board	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	25 mm (1 inch)	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	2 layers 16mm (5/8 inch) Type 'X' gypsum board

- On both sides, the 92 mm (3-5/8 inch) 25-gauge steel studs were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frames were isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On both sides, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - \circ $\;$ Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with Hilti CFS-TTS Firestop Top Track Seal. The Hilti CFS-TTS Firestop Top Track Seal was installed per manufacturer's instructions.

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-211

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

23 March 2020

- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.39 m (94 inches) high by 273 mm (10-3/4 inches) thick.
- The overall weight of the assembly was estimated to be 289.0 kg (637.1 lbs.) for a calculated surface density of 48.6 kg/m² (10.0 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 54. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 68.

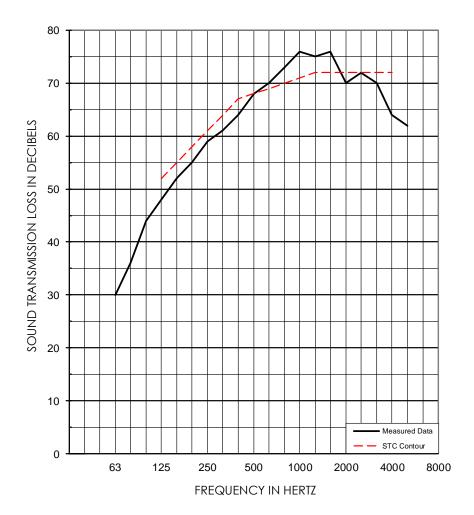
Approved:

Stephen A. Martin, Ph.D., P.E Laboratory Director

Raul Martinez Acoustical Test Technician

TESTING

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-211

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

•

1/3 OCT BAND CNTR FREQ		63	80	100	125	160	200	250	315	400	500	
TL in dB			30*	36*	44*	48*	52*	55*	59*	61*	64*	68*
95% Co	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
defici	encies					(4)	(3)	(3)	(2)	(3)	(3)	(0)
1/3 OCT BAND CNTR FREQ		630	800	1000	1250	1600	2000	2500	3150	4000	5000	
TL in dB			70*	73*	76*	75*	76*	70*	72*	70	64	62
95% Co	onfiden	ce in dB	0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	encies							(2)	(0)	(2)	(8)	
EWR	OITC	* Minimum estimate of		Tes	t Date:	04 March 2020						STC
68	54	transmission loss. Measurement limited by	Specimen Area:		n Area:	64 sq.ft.						68
		filler wall. Actual TL will be equal or		Temperature:			65.8 deg. F					
		greater than value reported.	Rela	Relative Humidity:		30 %						

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-212

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
4 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a double steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and duct seal putty at the head-of-wall joint.

TEST CONFIGURATION

Source Room Layers	Source Framing	Air Gap	Receiving Framing	Receiving Room Layers
	92 mm (3-5/8 inch) 25-gauge steel		92 mm (3-5/8 inch) 25-gauge steel	
2 layers	studs and 20-gauge slotted slip		studs and 20-gauge slotted slip	2 layers
16 mm (5/8 inch)	track spaced 610 mm (24 inches) on	25 mm	track spaced 610 mm (24 inches) on	16 mm (5/8 inch)
Type 'X' gypsum	center with R-13 batt insulation in	(1 inch)	center with R-13 batt insulation in	Type 'X' gypsum
board	the cavity and duct seal putty at the		the cavity and duct seal putty at the	board
	13 mm (1/2 inch) head-of-wall joint		13 mm (1/2 inch) head-of-wall joint	

On both sides, the 92 mm (3-5/8 inch) 25-gauge steel studs were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frames were isolated from the test opening with 6 mm (1/4 inch) neoprene pads.

- On both sides, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - \circ $\;$ Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with duct seal putty.
- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.

F

STING

WESTERN ELECTRO - ACOUSTIC LABORATORY

• RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-212

CALIBRATION

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

23 March 2020

- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 273 mm (10-3/4 inches) thick.
- The overall weight of the assembly was estimated to be 289.0 kg (637.1 lbs.) for a calculated surface density of 48.6 kg/m² (10.0 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 54. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 68.

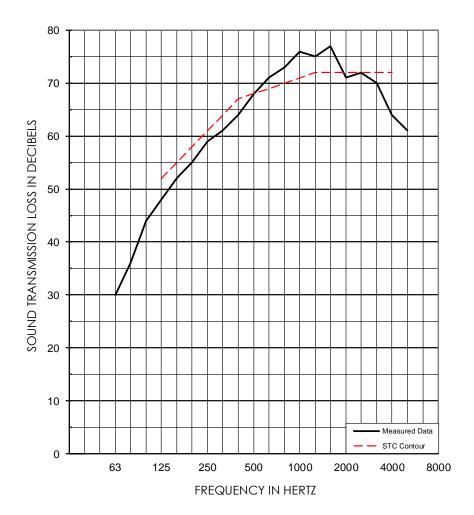
Approved:

Stephen A. Martin, Ph.D., P.E. Laboratory Director

Raul Martinez Acoustical Test Technician

TESTING

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-212

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

•

1/3 OCT BAND CNTR FREQ		63	80	100	125	160	200	250	315	400	500	
TL in dB		30*	36*	44*	48*	52*	55*	 59*	61*	64*	68*	
	_	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
defici	encies					(4)	(3)	(3)	(2)	(3)	(3)	(0)
1/3 OC	1/3 OCT BAND CNTR FREQ		630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in d	TL in dB		71*	73*	76*	75*	77*	71*	72*	70	64	61
95% C	onfiden	ce in dB	0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	encies							(1)	(0)	(2)	(8)	
EWR	OITC	* Minimum estimate of		Tes	t Date:	04 March 2020						STC
68	54	transmission loss. Measurement limited by	Sp	Specimen Area:		64 sq.ft.						68
		filler wall. Actual TL will be equal or	Temperature:		65.8 deg. F						(29)	
		greater than value reported.	Rela	Relative Humidity:								

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-213

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
4 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a double steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and an open gap at the head-of-wall joint.

TEST CONFIGURATION

Source Room Layers	Source Framing	Air Gap	Receiving Framing	Receiving Room Layers
	92 mm (3-5/8 inch) 25-gauge steel		92 mm (3-5/8 inch) 25-gauge steel	
2 layers	studs and 20-gauge slotted slip		studs and 20-gauge slotted slip	2 layers
16 mm (5/8 inch)	track spaced 610 mm (24 inches) on	25 mm	track spaced 610 mm (24 inches) on	16 mm (5/8 inch)
Type 'X' gypsum	center with R-13 batt insulation in	(1 inch)	center with R-13 batt insulation in	Type 'X' gypsum
board	the cavity and an open gap at the		the cavity and an open gap at the	board
	13 mm (1/2 inch) head-of-wall joint		13 mm (1/2 inch) head-of-wall joint	

On both sides, the 92 mm (3-5/8 inch) 25-gauge steel studs were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frames were isolated from the test opening with 6 mm (1/4 inch) neoprene pads.

- On both sides, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was left unsealed.
- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.

F

STING

WESTERN ELECTRO - ACOUSTIC LABORATORY

• RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-213

CALIBRATION

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

23 March 2020

- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 273 mm (10-3/4 inches) thick.
- The overall weight of the assembly was estimated to be 289.0 kg (637.1 lbs.) for a calculated surface density of 48.6 kg/m² (10.0 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 49. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 52.

Approved:

Stephen A. Martin, Ph.D., P.E. Laboratory Director

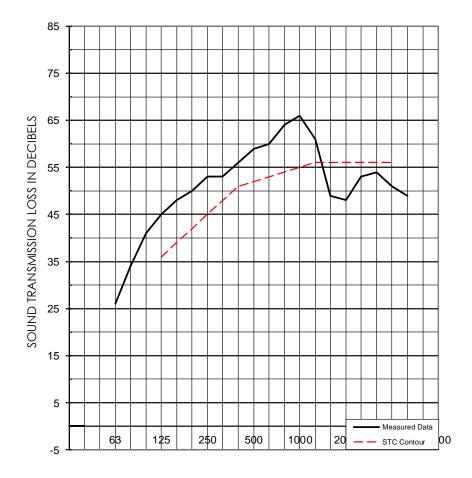
Raul Martinez Acoustical Test Technician

ΤE

S T I N G

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH


25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-213

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	4 March 2020

•

23 March 2020

FREQUENCY IN HERTZ

1/3 OC	T BAND	CNTR FREQ	63	80	100	125	160	200	250	315	400	500
TL in d	В		26*	34*	41*	45*	48*	50	53*	53	56	59
95% C	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
deficiencies												
1/3 OCT BAND CNTR FREQ		CNTR FREQ	630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in d	TL in dB		60	64	66	61	49	48	53	54	51	49
95% C	onfiden	ce in dB	0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	encies						(7)	(8)	(3)	(2)	(5)	
EWR	OITC	* Minimum estimate of		Tes	t Date:	04 March 2020						
58	49	transmission loss. Measurement limited by	Sp	pecimer	n Area:	64 sq.f		52				
		filler wall. Actual TL will be equal or		Tempe	rature:	65.8 deg. F						(25)
		greater than value reported.	Relative Humidity:		30 %							

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-215

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
4 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a double steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and Hilti CFS-TTS Firestop Top Track Seal at the head-of-wall joint.

Source Room Layers	Source Framing	Air Gap	Receiving Framing	Receiving Room Layers
2 layers 16 mm (5/8 inch) Type 'X' gypsum board	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	25 mm (1 inch)	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	2 layers 16 mm (5/8 inch) Type 'X' gypsum board

- On both sides, the 92 mm (3-5/8 inch) 25-gauge steel studs were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frames were isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On both sides, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - \circ $\;$ Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with Hilti CFS-TTS Firestop Top Track Seal. The Hilti CFS-TTS Firestop Top Track Seal was installed by rolling the product and friction-fitting it into the head-of-wall joint.

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-215

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

23 March 2020

- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 273 mm (10-3/4 inches) thick.
- The overall weight of the assembly was estimated to be 289.0 kg (637.1 lbs.) for a calculated surface density of 48.6 kg/m² (10.0 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 54. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 68.

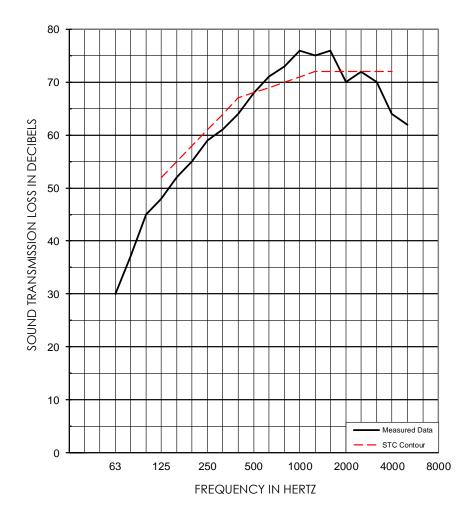
Approved:

Stephen A. Martin, Ph.D., P.E Laboratory Director

Raul Martinez Acoustical Test Technician

TESTING

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-215

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

•

1/3 OC	T BAND	CNTR FREQ	63	80	100	125	160	200	250	315	400	500
TL in d	В		30*	37*	45*	48*	52*	55*	59*	61*	64*	68*
95% Co	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
defici	encies					(4)	(3)	(3)	(2)	(3)	(3)	(0)
1/3 OCT BAND CNTR FREQ		CNTR FREQ	630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in dB			71*	73*	76*	75*	76*	70*	72*	70	64	62
95% Co	onfiden	ce in dB	0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	encies							(2)	(0)	(2)	(8)	
EWR	OITC	* Minimum estimate of		Tes	t Date:	04 Mar	ch 2020	C				STC
68	54			becimer	n Area:	64 sq.f	t.					68
		filler wall. Actual TL will be equal or		Tempe	rature:	65.8 de	əg. F					(30)
		greater than value reported.			30 %							

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-216

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
4 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a double steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and Hilti CP 606 Firestop acrylic sealant at the head-of-wall joint.

Source Room Layers	Source Framing	Air Gap	Receiving Framing	Receiving Room Layers
2 layers 16 mm (5/8 inch) Type 'X' gypsum board	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CP 606 Firestop acrylic sealant at the 13 mm (1/2 inch) head-of-wall joint	25 mm (1 inch)	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CP 606 Firestop acrylic sealant at the 13 mm (1/2 inch) head-of-wall joint	2 layers 16 mm (5/8 inch) Type 'X' gypsum board

- On both sides, the 92 mm (3-5/8 inch) 25-gauge steel studs were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frames were isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On both sides, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - \circ $\;$ Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with Hilti CP 606 Firestop acrylic sealant.

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-216

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

23 March 2020

- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 273 mm (10-3/4 inches) thick.
- The overall weight of the assembly was estimated to be 289.0 kg (637.1 lbs.) for a calculated surface density of 48.6 kg/m² (10.0 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 54. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 68.

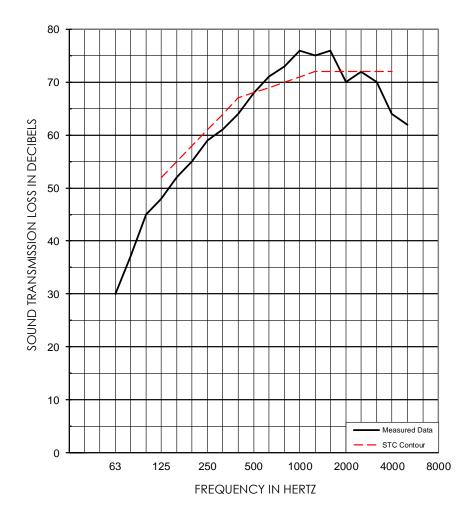
Approved:

Stephen A. Martin, Ph.D., P.E Laboratory Director

Raul Martinez Acoustical Test Technician

TESTING

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-216

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 4 March 2020

•

1/3 OC		CNTR FREQ	63	80	100	125	160	200	250	315	400	500
TL in d												
ILING	D		30*	37*	45*	48*	52*	55*	59*	61*	64*	68*
95% C	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
defici	deficiencies					(4)	(3)	(3)	(2)	(3)	(3)	(0)
1/3 OC	t band	CNTR FREQ	630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in d	В		71*	73*	76*	75*	76*	70*	72*	70	64	62
95% C	onfiden	ce in dB	0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	encies							(2)	(0)	(2)	(8)	
EWR	ΟΙΤΟ	* Minimum estimate of		Tes	t Date:	04 Mar	ch 2020	C				STC
68	54	transmission loss. Measurement limited by	Sp	pecimer	n Area:	64 sq.f	t.					68
		filler wall. Actual TL will be equal or Temp		Tempe	rature:	65.8 de	eg. F					(30)
		greater than value reported.	Rela	Relative Humidity:		30 %						

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-217

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
5 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a single steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and an open gap at the head-of-wall joint.

Source Room Layers	Framing	Receiving Room Layers
	92 mm (3-5/8 inch) 25-gauge steel	
2 layers	studs and 20-gauge slotted slip	2 layers
16 mm (5/8 inch)	track spaced 610 mm (24 inches) on	16 mm (5/8 inch)
Type 'X' gypsum	center with R-13 batt insulation in	Type 'X' gypsum
board	the cavity and an open gap at the	board
	13 mm (1/2 inch) head-of-wall joint	

- The framing consisted of 92 mm (3-5/8 inch) 25-gauge steel studs that were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frame was isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On both sides, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was left unsealed.
- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.

F

STING

WESTERN ELECTRO - ACOUSTIC LABORATORY

• RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-217

CALIBRATION

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 5 March 2020

23 March 2020

- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 156 mm (6-1/8 inches) thick.
- The overall weight of the assembly was estimated to be 272.1 kg (600.1 lbs.) for a calculated surface density of 45.8 kg/m² (9.4 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 35. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 49.

Approved:

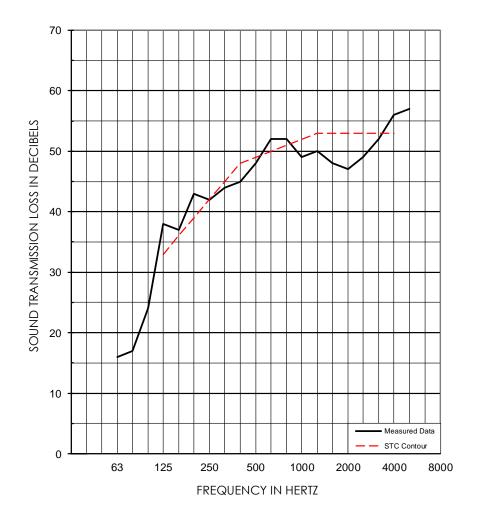
Stephen A. Martin, Ph.D., P.E. Laboratory Director

Chris Kezon Acoustical Test Technician

ΤE

S T I N G

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-217

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	5 March 2020

•

1/3 OCT BAND CNTR FREQ			63	80	100	125	160	200	250	315	400	500
TL in d	В		16	17	24	38	37	43	42	44	45	48
95% Co	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
deficiencies									(0)	(1)	(3)	(1)
1/3 OCT BAND CNTR FREQ			630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in dB			52	52	49	50	48	47	49	52	56	57
95% Co	95% Confidence in dB		0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	deficiencies				(3)	(3)	(5)	(6)	(4)	(1)		
EWR	OITC	Test Date:			t Date:	05 Mar	ch 2020	C				STC
51	35 Specimen Area: 64 sq.ft.						49					
Temperature:					69.4 de	eg. F					(27)	
	Relative Humidity:											

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-218

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
5 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a single steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and duct seal putty at the head-of-wall joint.

Source Room Layers	Framing	Receiving Room Layers
	92 mm (3-5/8 inch) 25-gauge steel	
2 layers	studs and 20-gauge slotted slip	2 layers
16 mm (5/8 inch)	track spaced 610 mm (24 inches) on	16 mm (5/8 inch)
Type 'X' gypsum	center with R-13 batt insulation in	Type 'X' gypsum
board	the cavity and duct seal putty at the	board
	13 mm (1/2 inch) head-of-wall joint	

- The framing consisted of 92 mm (3-5/8 inch) 25-gauge steel studs that were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frame was isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On both sides, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - \circ $\;$ Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with duct seal putty.
- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.

F

STING

WESTERN ELECTRO - ACOUSTIC LABORATORY

• RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-218

CALIBRATION

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 5 March 2020

23 March 2020

- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 156 mm (6-1/8 inches) thick.
- The overall weight of the assembly was estimated to be 272.1 kg (600.1 lbs.) for a calculated surface density of 45.8 kg/m² (9.4 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 36. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 53.

Approved:

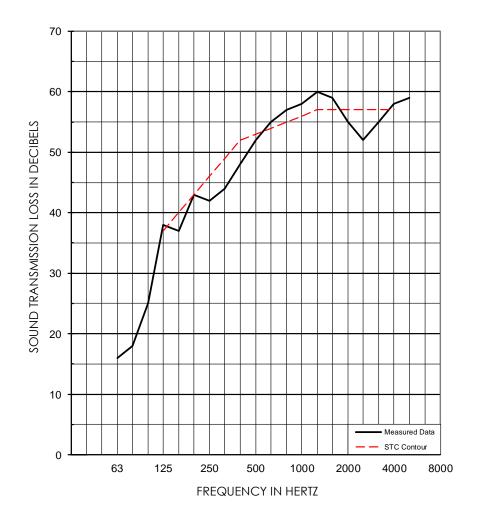
Stephen A. Martin, Ph.D., P.E. Laboratory Director

Raul Martinez Acoustical Test Technician

ΤE

S T I N G

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-218

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	5 March 2020

•

1/3 OC	3 OCT BAND CNTR FREQ			80	100	125	160	200	250	315	400	500
TL in d	В		16	18	25	38	37	43	42	44	48	52
95% Co	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
defici	encies						(3)	(0)	(4)	(5)	(4)	(1)
1/3 OC	/3 OCT BAND CNTR FREQ			800	1000	1250	1600	2000	2500	3150	4000	5000
TL in dB			55	57	58	60	59	55	52	55	58	59
95% Co	95% Confidence in dB		0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
defici	deficiencies							(2)	(5)	(2)		
EWR	OITC			Tes	t Date:	05 Mar	ch 2020	C				STC
54	36	Specimen Area:			n Area:	64 sq.f	t.					53
Temperature:			69.4 de	eg. F					(26)			
Relative Humidity:					39 %							

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-219

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
5 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a single steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and Hilti CFS-TTS Firestop Top Track Seal at the head-of-wall joint.

Source Room Layers	Framing	Receiving Room Layers
2 layers 16mm (5/8 inch) Type 'X' gypsum board	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	2 layers 16mm (5/8 inch) Type 'X' gypsum board

- The framing consisted of 92 mm (3-5/8 inch) 25-gauge steel studs that were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frame was isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On both sides, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - \circ $\;$ Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with Hilti CFS-TTS Firestop Top Track Seal. The Hilti CFS-TTS Firestop Top Track Seal was installed by rolling the product and friction-fitting it into the head-of-wall joint.

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-219

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 5 March 2020

23 March 2020

- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 156 mm (6-1/8 inches) thick.
- The overall weight of the assembly was estimated to be 272.1 kg (600.1 lbs.) for a calculated surface density of 45.8 kg/m² (9.4 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 36. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 53.

Approved:

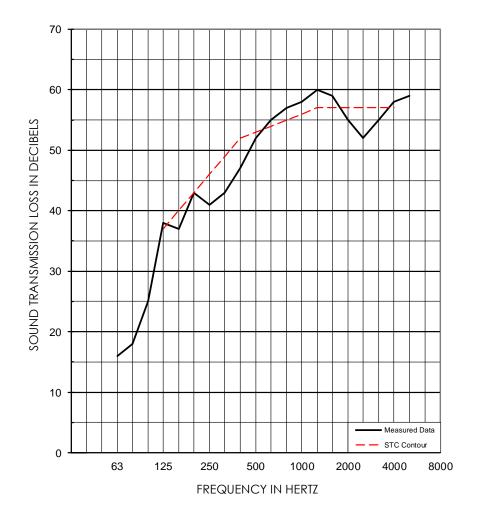
Stephen A. Martin, Ph.D., P.E. Laboratory Director

Raul Martinez Acoustical Test Technician

ΤE

S T I N G

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-219

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	5 March 2020

•

1/3 OC	/3 OCT BAND CNTR FREQ			80	100	125	160	200	250	315	400	500
TL in d	В		16	18	25	38	37	43	41	43	47	52
95% C	onfiden	ce in dB	1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
deficiencies							(3)	(0)	(5)	(6)	(5)	(1)
1/3 OCT BAND CNTR FREQ			630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in dB			55	57	58	60	59	55	52	55	58	59
95% C	95% Confidence in dB		0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
deficiencies							(2)	(5)	(2)			
EWR	ΟΙΤΟ			Tes	t Date:	05 Mar	ch 2020	C				STC
53	36	Specimen Area:			n Area:	64 sq.f	t.					53
Temperature:				69.4 de	eg. F					(29)		
Relative Humidity:						39 %						

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-220

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	5 March 2020

23 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a single steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and Hilti CFS-TTS Firestop Top Track Seal at the head-of-wall joint.

Source Room Layers	Framing	Receiving Room Layers
2 layers 16 mm (5/8 inch) Type 'X' gypsum board	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	2 layers 16mm (5/8 inch) Type 'X' gypsum board

- The framing consisted of 92 mm (3-5/8 inch) 25-gauge steel studs that were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frame was isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On both sides, two layers of 16 mm (5/8 inch) Type 'X' gypsum board were screwed to the studs.
 - The first layer was screwed using 32 mm (1-1/4 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 203 mm (8 inches) O.C. along the perimeter and 305 mm (12 inches) O.C. in the field.
 - \circ $\;$ Joints for the first and second layer were staggered.
 - All gypsum board was oriented vertically.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with Hilti CFS-TTS Firestop Top Track Seal. The Hilti CFS-TTS Firestop Top Track Seal was installed per manufacturer's instructions.

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-220

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 5 March 2020

23 March 2020

- All gypsum board joints were staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 156 mm (6-1/8 inches) thick.
- The overall weight of the assembly was estimated to be 272.1 kg (600.1 lbs.) for a calculated surface density of 45.8 kg/m² (9.4 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 36. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 53.

Approved:

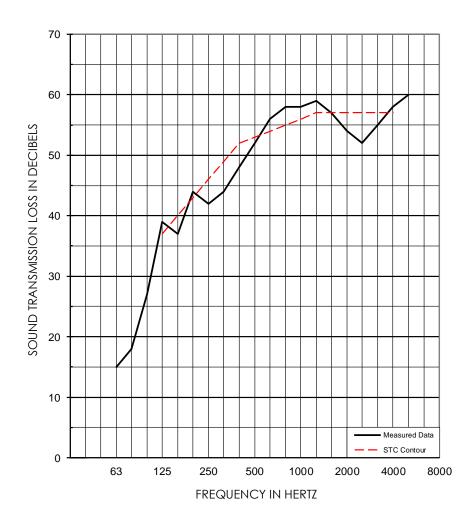
Stephen A. Martin, Ph.D., P.E. Laboratory Director

Raul Martinez Acoustical Test Technician

ΤE

S T I N G

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-220

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	5 March 2020

•

1/3 OC	T BAND	D CNTR FREQ 63 80 100				125	160	200	250	315	400	500
TL in dB			15	18	27	39	37	44	42	44	48	52
95% Confidence in dB			1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
deficiencies							(3)		(4)	(5)	(4)	(1)
1/3 OCT BAND CNTR FREQ			630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in dB			56	58	58	59	57	54	52	55	58	60
95% Confidence in dB			0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
deficiencies							(0)	(3)	(5)	(2)		
EWR	OITC			Tes	t Date:	05 Mar	ch 2020	C				STC
54	36		n Area:	rea: 64 sq.ft.								
Temperature:							əg. F					(27)
Relative Humidity:												

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-221

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	5 March 2020

23 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a single steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and Hilti CFS-TTS Firestop Top Track Seal at the head-of-wall joint.

Source Room Layers	Framing	Receiving Room Layers		
1 layer 16mm (5/8 inch) Type 'X' gypsum board	92 mm (3-5/8 inch) 25-gauge steel studs and 20-gauge slotted slip track spaced 610 mm (24 inches) on center with R-13 batt insulation in the cavity and Hilti CFS-TTS Firestop Top Track Seal at the 13 mm (1/2 inch) head-of-wall joint	1 layer 16mm (5/8 inch) Type 'X' gypsum board		

- The framing consisted of 92 mm (3-5/8 inch) 25-gauge steel studs that were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frame was isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On both sides, one layer of 16 mm (5/8 inch) Type 'X' gypsum board was screwed to the studs using 32 mm (1-1/4 inch) long #6 drywall screws spaced at 203 mm (8 inches) O.C. at the perimeter and 305 mm (12 inches) in the field.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with Hilti CFS-TTS Firestop Top Track Seal. The Hilti CFS-TTS Firestop Top Track Seal was installed per manufacturer's instructions.
- All gypsum board was oriented vertically with joints staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 124 mm (4-7/8 inches) thick.

F

STING

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-221

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 5 March 2020

•

23 March 2020

 The overall weight of the assembly was estimated to be 144.5 kg (318.5 lbs.) for a calculated surface density of 24.3 kg/m² (5.0 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 32. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 49.

Approved:

Stephen A. Martin, Ph.D., P.E Laboratory Director

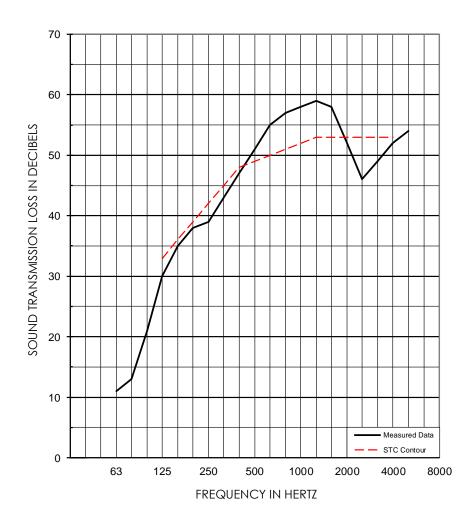
2

Raul Martinez Acoustical Test Technician

ΤE

S T I N G

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-221

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	5 March 2020

•

1/3 OC	T BAND	D CNTR FREQ 63 80 100				125	160	200	250	315	400	500	
TL in dB			11	13	21	30	35	38	39	43	47	51	
95% Confidence in dB			1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38	
deficiencies						(3)	(1)	(1)	(3)	(2)	(1)		
1/3 OCT BAND CNTR FREQ			630	800	1000	1250	1600	2000	2500	3150	4000	5000	
TL in dB			55	57	58	59	58	52	46	49	52	54	
95% Confidence in dB		0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50		
deficiencies								(1)	(7)	(4)	(1)		
EWR	OITC		t Date:	05 Mar	rch 2020	C				STC			
50	32	2 Specimen Area:					cimen Area: 64 sq.ft.						
Temperature:							əg. F					(24)	
Relative Humidity:													

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

23 March 2020

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-222

Hilti
P.O. Box 21148
Tulsa, Oklahoma 74121
5 March 2020

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen consisted of a single steel stud wall assembly with Type 'X' gypsum board installed on both sides of the panel, batt insulation in the stud cavity, and duct seal putty at the head-of-wall joint.

Source Room Layers	Framing	Receiving Room Layers
	92 mm (3-5/8 inch) 25-gauge steel	
1 layer	studs and 20-gauge slotted slip	1 layer
16 mm (5/8 inch)	track spaced 610 mm (24 inches) on	16 mm (5/8 inch)
Type 'X' gypsum	center with R-13 batt insulation in	Type 'X' gypsum
board	the cavity and duct seal putty at the	board
	13 mm (1/2 inch) head-of-wall joint	

- The framing consisted of 92 mm (3-5/8 inch) 25-gauge steel studs that were spaced 610 mm (24 inches) on center (O.C.) and were screwed to the 20-gauge slotted slip track with 12 mm (1/2 inch) truss screws. Unfaced R-13 fiberglass insulation was installed in the stud cavities. The frame was isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On both sides, one layer of 16 mm (5/8 inch) Type 'X' gypsum board was screwed to the studs using 32 mm (1-1/4 inch) long #6 drywall screws spaced at 203 mm (8 inches) O.C. at the perimeter and 305 mm (12 inches) in the field.
- On both sides, a gap at the head-of-wall joint was left. The gap size was 13 mm (1/2 inch) and was sealed with duct seal putty.
- All gypsum board was oriented vertically with joints staggered on opposite sides. Aside from the head-of-wall joint, the remaining gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 124 mm (4-7/8 inches) thick.
- The overall weight of the assembly was estimated to be 144.5 kg (318.5 lbs.) for a calculated surface density of 24.3 kg/m² (5.0 lbs./ft²).

WESTERN ELECTRO - ACOUSTIC LABORATORY

• RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-222

CALIBRATION

CLIENT: Hilti P.O. Box 21148 Tulsa, Oklahoma 74121 TEST DATE: 5 March 2020

•

23 March 2020

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC 31. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC 50.

Approved:

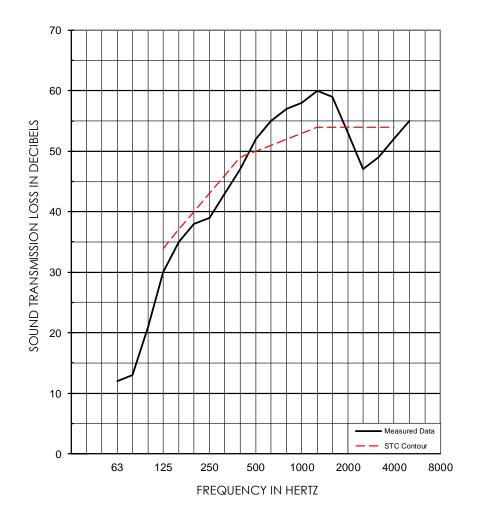
Stephen A. Martin, Ph.D., P.I Laboratory Director

Raul Martinez Acoustical Test Technician

ΤE

S T I N G

WESTERN ELECTRO - ACOUSTIC LABORATORY


CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL20-222

CLIENT:	Hilti
	P.O. Box 21148
	Tulsa, Oklahoma 74121
TEST DATE:	5 March 2020

•

1/3 OC	T BAND	AND CNTR FREQ 63 80 100				125	160	200	250	315	400	500
TL in dB			12	13	21	30	35	38	39	43	47	52
95% Confidence in dB			1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
deficiencies						(4)	(2)	(2)	(4)	(3)	(2)	
1/3 OCT BAND CNTR FREQ			630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in dB			55	57	58	60	59	53	47	49	52	55
95% Confidence in dB			0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
deficiencies								(1)	(7)	(5)	(2)	
EWR	ΟΙΤΟ		t Date:	05 Mar	ch 2020	C				STC		
50	31		Sp	pecimer	n Area:	Area: 64 sq.ft.						
Temperature: 70.5 deg. F										(32)		
Relative Humidity: 35 %												

