

The following pages are an excerpt from the North American Product Technical Guide, Volume 1: Direct Fastening Technical Guide, Edition 22.

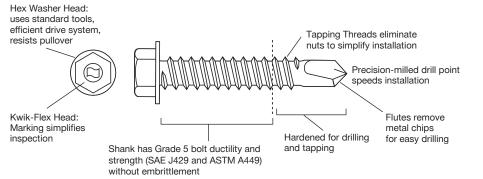
Please refer to the publication in its entirety for complete details on this product including data development, base materials, general suitability, installation, corrosion, and product specifications.

Direct Fastening Technical Guide, Edition 22

To consult directly with a team member regarding our direct fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am - 5:00pm CST.

US: 877-749-6337 or <u>HNATechnicalServices@hilti.com</u> CA: 1-800-363-4458 ext. 6 or <u>CATechnicalServices@hilti.com</u>

Direct Fastening Technical Guide, Edition 22


3.6.4 KWIK-FLEX SELF-DRILLING SCREWS 3.6.4.1 PRODUCT DESCRIPTION

Hilti Kwik-Flex fasteners combine the in-place economy of self-drilling screws with the strength and performance of bolted connections. The precisionmilled point and lead threads of a Kwik-Flex fastener are selectively hardened for dependable self-drilling and tapping. The balance of the fastener retains the ductility. This results in superior resistance to embrittlement that can be caused by stress, dissimilar metals and moisture.

Product features

- Virtually immune to embrittlement failure
- Self-drilling for convenience, labor savings
- Kwik-Cote finish provides greater corrosion resistance than cadmium or zinc plating (reference Section 2.3.3.1)
- Complies with the Buy America Act
- Suitable for: Aluminum to steel Fire retardant plywood Corrosive environments

(Reference Section 3.6.1.6)

3.6.4.1	Product description
3.6.4.2	Material specifications
3.6.4.3	Technical data
3.6.4.4	Installation instructions
3.6.4.5	Ordering information

Listings/Approvals

ICC-ES (International Code Council) ESR-3332 with LABC/LARC Supplement

3.6.4.2 MATERIALSPECIFICATIONS

Mechanical properties					
Yield Str ksi (l	ength, F _y MPa)		ength, F _u MPa)		
92	(634)	120 (828)			

Note: These fasteners address delayed failure due to hydrogen assisted stress corrosion cracking. They are not any more resistant to other corrosion effects than standard Hilti Kwik-Cote screws.

3.6.4.3 TECHNICAL DATA

Ultimate tensile strengths - pullout (tension), lb (kN)^{1,2,3,4,5,8}

	Thickness of member not in contact with the screw head												
Screw	Nominal		Steel ^e , ga (in.) or in.								Aluminum ⁷ , in.		
designation	diameter in.	18	16	14	12				- // 0				
		(0.048)	(0.060)	(0.075)	(0.105)	1/8	3/16	1/4	5/16	1/8	1/4	3/8	
#10.16	0.100	410	580	710	920	890			920				
#10-16 0.190	0.190	(1.82)	(2.58)	(3.16)	(4.09)	(3.96)	_	_	-	(4.09)	_	-	
#12-14	0.216	395	615	790	985	1530	1995	-		630	2745		
#12-14	0.210	(1.76)	(2.74)	(3.51)	(4.38)	(6.81)	(8.87)		-	(2.80)	(12.21)	-	
1/4-14	0.250	395	620	765	1025	1685	2695		720	2905			
1/4-14	0.250	(1.76)	(2.76)	(3.40)	(4.56)	(7.50)	(11.99)		-	(3.20)	(12.92)		
1/4 00	0.250		610	780	1270	1570	2740	3130	3620	690	2100	4365	
1/4-20	0.250	-	(2.71)	(3.47)	(5.65)	(6.98)	(12.19)	(13.92)	(13.92) (16.10)	(3.07)	(9.34)	(19.42)	
E/10 10	5/40.40				1560	2120							
5/16-18	0.313	_	_	_	(6.94)	(9.43)	-	-	-	_	_	-	
E/16 0/	0.313				1375	1910	2170	3565	4270				
5/16-24	0.313	-	_	_	(6.12)	(8.50)	(9.65)	(15.86)	(18.99)	_	_	_	

The lower of the ultimate pullout, pullover, and tension fastener strength of screw should be used for design. 1

Load values based upon testing completed in accordance with AISI S905. 2

3 AISI S100 recommends a safety factor of 3.0 be applied for allowable strength design, a Φ factor of 0.5 be applied for LRFD design and a Φ factor of 0.4 be

applied for LSD design.

ANSI/ASME standard screw diameters were used in the calculations and are listed in the tables. 4

The screw diameters in the table above are available in head styles of pan, hex washer head, pancake, flat, wafer and bugle. The load data in the table is based upon sheet steel with $F_u = 45$ ksi. For $F_u = 55$ ksi steel, multiply values by 1.22. For $F_u = 65$ ksi steel, multiply values by 1.44. Refer to Section 3.6.4.5 to ensure drilling capacities.

Ultimate tensile strengths - pullover (tension), lb (kN)^{1,2,4,5,7}

		Thickness of member in contact with the screw head									
Screw	Washer or head	Steel ⁶ , ga (in.) or in.									
designation	diameter in.	18	16	14	12	1/8	3/16	1/4	5/16		
		(0.048) ³	(0.060)	(0.075)	(0.105)	1/0	0,10		3/10		
	•		ŀ	lex Washer H	ead (HWH)						
#10.10	#10-16 0.384	1245	1445	1445	1445	1445					
#10-16		(5.54)	(6.43)	(6.43)	(6.43)	(6.43)	-	-	_		
#12-14	0.398	1290	1610 ³	2015 ³	2200	2200	2200				
#12-24	0.396	(5.74)	(7.16)	(8.96)	(9.79)	(9.79)	(9.79)				
4/4 44	0.480	1555	1945 ³	2430 ³	3380	3380	3380	-	-		
1/4-14	0.460	(6.92)	(8.65)	(10.81)	(15.03)	(15.03)	(15.03)				
1/4-20	0.480		1945 ³	2430 ³	3380	3380	3380	3380	3380		
1/4-20	0.460	-	(8.65)	(10.81)	(15.03)	(15.03)	(15.03)	(15.03)	(15.03)		
5/16-18	0.600					3505	3505				
5/10-18	0.000		_	-	(15.59)	(15.59)	-	_			
5/16-24	0.600	_			3980	3980	3980	3980	3980		
5/10-24	5/16-24 0.800	_	-	_	(17.70)	(17.70)	(17.70)	(17.70)	(17.70)		
				Phillips Pan H	ead (PPH)						
#10	0.357	1160	1445	1805	2530	3010		_			
<i>π</i> 10	0.001	(5.16)	(6.43)	(8.03)	(11.25)	(13.39)	_	_			

1 The lower of the ultimate pullout, pullover, and tension fastener strength of screw should be used for design.

2

Unless of therwise noted, load values based upon testing completed in accordance with AISI S905. Load values for 18 gauge and noted 16 and 14 gauge steel are based upon calculations done in accordance with Section J4 of AISI S100. ANSI/ASME standard screw head diameters 3 were used in the calculations and are listed in the table.

A AISI S100 recommends a safety factor of 3.0 be applied for allowable strength design, a Φ factor of 0.5 be applied for LRFD design and a Φ factor of 0.4 be applied for LSD design. 5 Pancake Framing Head Undercut (PFHUC) and Phillips Wafer Head (PWH) styles are not covered by this table because they are not used for attachment of steel to steel. 6 The load data in the table is based upon sheet steel with $F_u = 45$ ksi. For $F_u = 55$ ksi steel, multiply values by 1.22.

7

Refer to Section 3.6.4.5 to ensure drilling capacities.

		Thickness of members, in contact with screw head - not in contact with screw head									
Screw designation in.	Steel ⁶ , ga (in.) or in.								Aluminum ⁷ , in.		
	18 (0.048) - 18 (0.048	18 (0.048) - 14 (0.075)	16 (0.060) - 16 (0.060)	14 (0.075) - 14 (0.075)	1/8-3/16	3/16 - 1/4	1/4 - 12 (0.105)	1/8 – 1/8	1/8 – 1/4		
#10.10.#0	0.400	865	865	1210					1760		
#10-16 #2 0.190	(3.85)	(3.85)	(5.38)	-	-	-	-	(7.83)	-		
#40.40.#0	0.400	1105	1185	1360				1760			
#10-16 #3 0.190	(4.92)	(5.27)	(6.05)	_	-	-	-	(7.83)	_		
#10 14		1070	1720	1540	1490		-	-	1005	1425	
#12-14	0.216	(4.76)	(7.65)	(6.85)	(6.63)	-			(4.47)	(6.34)	
1/4 14	0.250	1130	1880	1560	1985	1915		1215	1770		
1/4-14	0.250	(5.03)	(8.36)	(6.94)	(8.83)	(8.52)	_	-	(5.40)	(7.87)	
1/4-20	0.250	1160	1580	1600	2010	1785	1870	1660	1185	1770	
1/4-20	0.250	(5.16)	(7.03)	(7.12)	(8.94)	(7.94)	(8.32)	(7.38)	(5.27)	(7.87)	
E/10 10	0.010	1225	1865	1685	2675						
5/16-18 0.313	0.313	(5.45)	(8.30)	(7.50)	(11.90)	_	_	-		-	
5/16-24	0.313					4040	2955	2660	2220	3440	
5/10-24	0.313	-			_	(17.97)	(13.14)	(11.83)	(9.88)	(15.30)	

Ultimate shear strengths - bearing (shear), lb (kN)^{1,2,3,4,5,8}

The lower of the ultimate shear bearing and shear fastener strength of screw should be used for design. 1

2 Load values based upon testing completed in accordance with AISI S905.

3 AISI S100 recommends a safety factor of 3.0 be applied for allowable strength design, a Φ factor of 0.5 be applied for LRFD design and a Φ factor of 0.4 be applied for LSD design.

ANSI/ASME standard screw head diameters were used in the calculations and are listed in the tables. 4 5 Load values in table are for Hex Washer Head (HWH) and Phillips Pan Head (PPH). Pancake Framing Head Undercut (PFHUC) and Phillips Wafer Head (PWH) styles are not covered by

The load data in the table is based upon sheet steel with $F_u = 45$ ksi. For $F_u = 55$ ksi steel, multiply values by 1.22. For $F_u = 65$ ksi steel, multiply values by 1.44. Load values based upon testing in 6063-T5 aluminum alloy. 6

8 Refer to Section 3.6.4.5 to ensure drilling capacities.

Nominal ultimate fastener strength of screw³

Screw designation	Nominal	Nominal fastener strength						
	diameter in.		ion, P _{ts} (kN) ¹	Shear, P Ib (kN) ²				
#10-16	0.190	2275	(10.12)	1465	(6.52)			
#12-14	0.216	3215	(14.30)	1990	(8.85)			
#12-24	0.216	4175	(18.57)	2505	(11.14)			
1/4-14	0.250	4365	(19.42)	2690	(11.97)			
1/4-20	0.250	4365	(19.42)	2615	(11.63)			
5/16-18	0.313	8070	(35.90)	4570	(20.33)			
5/16-24	0.313	8755	(38.94)	5470	(24.33)			

The lower of the ultimate pullout, pullover, and tension fastener strength of screw should be used for design. The Pullout and 1 Pullover tables in this section have already been adjusted where screw strength governs.

2 The lower of the ultimate shear fastener strength and shear bearing should be used for design. The Shear Bearing table in this section has already been adjusted where screw strength governs.

3 AISI S100 recommends a safety factor of 3.0 be applied for allowable strength design, a Φ factor of 0.5 be applied for LRFD design and a Φ factor of 0.4 be applied for LSD design.

3.6.4.4 INSTALLATION INSTRUCTIONS

For general discussion of Hilti screw fastener installation, reference Section 3.6.1.7. For specific Kwik-Flex spacing and edge distance recommendations, reference the following table.

Kwik-flex screw specification table

Fastener size/diameter	Fastened material	Minimum spacing (in.)	Minimum edge distance (in.)
#10	Steel	5/8	9/32
#10	Aluminum	15/32	3/8
#10	Steel	11/16	3/8
#12	Aluminum	9/16	7/16
1/4 Inch	Steel	3/4	3/8
	Aluminum	5/8	1/2

3.6.4.5 ORDERING INFORMATION

Description	Maximum drilling capacity	Maximum total thickness (MT)	Recess	Box Qty
Countersinking head				
S-WD 10-24 x 1 1/4" PWH3 KF	0.175"	0.750"	PH2 TEK	5,000
S-WD 12-14 x 1" PFHUC3 KF	0.210"	0.500"	PH2 TEK	4,000
S-WD 12-14 x 1 1/2" PFHUC3 KF1	0.210"	1.000"	PH2 TEK	2,500
S-WD 14-20 x 3" PFHUC4 KF1	0.312"	2.500"	PH3	500
S-WD 14-20 x 4" PFHUC4 KF1	0.312"	3.500"	PH3	500
#10 Diameter				
S-MD 10-16 x 3/4" PPH3 KF1	0.175"	0.500"	PH2 TEK	6,000
S-MD 10-16 x 3/4" HWH3 KF	0.175"	0.500"	5/16"	6,000
#12 Diameter HWH				
S-MD 12-14 x 7/8" HWH3 KF	0.210"	0.470"	5/16"	5,000
S-MD 12-14 x 1" HWH3 KF	0.210"	0.500"	5/16"	4,000
S-MD 12-14 x 1 1/2" HWH3 KF	0.210"	1.000"	5/16"	2,500
S-MD 12-14 x 1 1/2" HWH4 KF1	0.312"	0.875"	5/16"	2,500
S-MD 12-14 x 2" HWH3 KF	0.210"	1.500"	5/16"	2,000
S-MD 12-14 x 3" HWH3 KF1	0.210"	2.500"	5/16"	1,000
S-MD 12-24 x 1 3/4" HWH5 KF1	0.500"	0.800"	5/16"	2,500
1/4 Diameter HWH				
S-MD 1/4-14 x 1" HWH3 KF	0.220"	0.450"	3/8"	3,000
S-MD 1/4-14 x 1 1/2" HWH3 KF	0.220"	0.950"	3/8"	2,000
S-MD 1/4-14 x 2" HWH3 KF	0.220"	1.450"	3/8"	1,500
S-MD 1/4-20 x 1 1/8" HWH4 KF1	0.312"	0.500"	3/8"	2,500
S-MD 1/4-20 x 1 1/2" HWH4 KF	0.312"	0.830"	3/8"	2,000
S-MD 1/4-20 x 1 3/4" HWH5 KF1	0.500"	0.800"	3/8"	1,000
S-MD 1/4-20 x 2" HWH4 KF	0.312"	1.330"	3/8"	1,500
S-MD 1/4-20 x 2 1/2" HWH4 KF	0.312"	1.830"	3/8"	1,000
S-MD 1/4-20 x 3 3/8" HWH4 KF1	0.312"	2.700"	3/8"	500
S-MD 1/4-20 x 4" HWH4 KF1	0.312"	3.500"	3/8"	500
5/16 Diameter HWH				
S-MD 5/16-18 x 1-1/2" HWH3 KF1	0.220"	0.850"	3/8"	1,000
S-MD 5/16-24 x 1-1/2" HWH4 KF1	0.312"	0.850"	3/8"	1,000
S-MD 5/16-24 x 2" HWH4 KF1	0.312"	1.350"	3/8"	1,000

1 Available only through special order.