

ECONOMICAL MANUAL SET FLUSH ANCHOR

Flush anchor HDV technical supplement

PRODUCT DESCRIPTION

Hilti HDV Drop-in Anchors are internally threaded, flush-mounted expansion anchors for use in concrete.

Product Features

- Anchor, setting tool and Hilti drill bit form a matched tolerance system to provide reliable fastenings
- · Allows shallow embedment without sacrificing performance
- · Ideal for repetitive fastenings with threaded rods of equal length

Guide Specifications

Expansion anchors shall be flush or shell type and zinc plated in accordance with ASTM B633, SC 1, Type III. Anchors shall be Hilti HDV anchors as supplied by Hilti.

Install shell or flush type anchors in holes drilled with Hilti carbide tipped drill bits. Install anchors per Manufacturer's Printed Installation Instructions (MPII).

Listings/Approvals

FM (Factory Mutual) Pipe Hanger Components for Automatic Sprinkler Systems (3/8 - 1/2)

UL (Underwriters Laboratories) UL 203 Pipe Hanger Equipment for Fire Protection Services (3/8 - 1/2)

MATERIAL SPECIFICATIONS

HDV 1/4", 3/8" and 1/2" are manufactured from mild carbon steel which is plated with a zinc finish for corrosion protection in accordance with ASTM B633, SC 1, Type III.

TECHNICAL DATA

Table 1 - HDV Specification Table

			HDV		
Details	Anchor Size	in.	1/4	3/8	1/2
d _{bit}	nominal bit diameter	in.	3/8	1/2	5/8
h _{nom} ℓ h₁	standard depth of embedment anchor length hole depth	in. (mm)	1 (25)	1-9/16 (40)	2 (51)
$\ell_{ ext{th}}$	useable thread length	in. (mm)	7/16 (11)	5/8 (15)	11/16 (17)
	threads per inch		20	16	13
h	minimum base material thickness	in. (mm)	3 (76)	3-1/8 (79)	4 (102)
T _{inst}	installation torque	ft-lb (Nm)	4 (5.4)	11 (14.9)	22 (29.8)

 $\left(\frac{N_{\rm d}}{N_{\rm rec}}\right)^{5/3} + \left(\frac{V_{\rm d}}{V_{\rm rec}}\right)^{5/3} \le 1.0$

Combined Shear and Tension Loading

Table 2 - HDV carbon steel allowable loads in concrete¹

Nominal anchor	2000 psi (13.8 MPa)	4000 psi (27.6 MPa)	6000 psi (41.4 MPa)		
diameter in.	Tension lb (kN)	Shear Ib (kN)	Tension lb (kN)	Shear Ib (kN)	Tension lb (kN)	Shear Ib (kN)	
1/4	385 (1.7)	450 (2.0)	510 (2.3)	625 (2.8)	640 (2.8)	700 (3.1)	
3/8	785 (3.5)	965 (4.3)	1070 (4.8)	1250 (5.6)	1360 (6.0)	1500 (6.7)	
1/2	1120 (5.0)	1500 (6.7)	1785 (7.9)	2125 (9.5)	2345 (10.4)	2500 (11.1)	

¹ The ultimate shear and allowable shear values are based on the use of SAE Grade 5 bolts, (fy = 85 ksi, fult = 120 ksi) with the exception of the HDV 1/4 in f'c = 6000 psi concrete which is based upon the use of a SAE Grade 8 bolt (fy = 120 ksi, fult = 150 ksi). When using steel bolts with a lower tensile strength, steel failure must be considered.

Table 3 - HDV carbon steel ultimate loads in concrete¹

Nominal anchor	2000 psi (13.8 MPa)	4000 psi (27.6 MPa)	6000 psi (6000 psi (41.4 MPa)	
diameter in.	Tension lb (kN)	Shear Ib (kN)	Tension lb (kN)	Shear Ib (kN)	Tension lb (kN)	Shear Ib (kN)	
1/4	1535 (6.8)	1800 (8.0)	2040 (9.1)	2500 (11.1)	2555 (11.4)	2800 (12.5)	
3/8	3130 (13.9)	3850 (17.1)	4275 (19.0)	5000 (22.2)	5430 (24.2)	6000 (26.7)	
1/2	4470 (19.9)	6000 (26.7)	7140 (37.8)	8500 (37.8)	9375 (41.7)	10000 (44.5)	

¹ The ultimate shear and allowable shear values are based on the use of SAE Grade 5 bolts, (*fy* = 85 ksi, *fult* = 120 ksi) with the exception of the HDV 1/4 in *f*'c = 6000 psi concrete which is based upon the use of a SAE Grade 8 bolt (*fy* = 120 ksi). When using steel bolts with a lower tensile strength, steel failure must be considered.

Table 4 - HDV carbon steel allowable loads in lightweight concrete and lightweight concrete poured over metal deck^{1,2}

	Anchor in 3000 psi	Installed (20.7 MPa)	Anchor Through Steel D	Installed Jeck Lower Flute			
Nominal anchor	Lt. Wt. C	concrete ³	Into 3000 ps Lt. Wt. C	si (20.7 MPa) Concrete⁴	Into 3000 psi (20.7 MPa) Lt. Wt. Concrete⁴		
in.	Tension lb (kN)	Shear Ib (kN)	Tension lb (kN)	Shear Ib (kN)	Tension lb (kN)	Shear Ib (kN)	
1/4	355 (1.6)	340 (1.5)	405 (1.8)	335 (1.5)	290 (1.3)	250 (1.1)	
3/8	665 (3.0)	940 (4.2)	775 (3.4)	1010 (4.5)	440 (2.0)	500 (2.2)	
1/2	1135 (5.0)	1700 (7.6)	1105 (4.9)	1755 (7.8)	625 (2.8)	750 (3.5)	

¹ The allowable values are based on the use of SAE Grade 2 bolts installed in the anchors. When using steel bolts with a lower tensile strength, steel failure must be considered.

² Based on using a safety factor of 4.0.

³ The tabulated shear and tensile values are for anchors installed in structural lightweight concrete having the designated ultimate compressive strength at the time of installation. The concrete

must comply with ASTM C 330-05. ⁴ The tabulated shear and tensile values are for anchors installed through 20 gauge intermediate decking into structural lightweight concrete having the designated ultimate strength at the time of installation. The concrete must comply with ASTM C 330-05. See figure on following page for installation parameters.

HDV embedment depth for load adjustment factor calculations

Anchor Size	h _{nom}				
in.	in. (mm)				
1/4	1 (25)				
3/8	1-9/16 (40)				
1/2	2 (51)				
h _{nom} = standard ebedment depth					

Anchor spacing and edge distance guidelines

Anchor Spacing Adjustment Factors Edge Distance Adjustment Factors

= Actual Spacing $s_{min} = 2.0 h_{nom}$ = 3.5 h_{nom} S_{er}

s

c = Actual Edge Distance $c_{min} = 2.0 h_{nom}$ $c_{er} = 3.0 h_{nom}$

Load adjustment factors for HDV flush anchors in concrete

Load Adjustment	Load Adjustment Factors for Anchor Spacing $\mathbf{f}_{_{\!A}}$			Load Adjustment Factors for Edge Distance f _R							
Tens	Tension & Shear Loads				Shear f _{rv}						
Spacing s	Spacing s Anchor Diameter		Edge Distance c	Edge Distance c Anchor Diameter			Anchor Diameter				
in. (mm)	1/4	3/8	1/2	in. (mm)	1/4	3/8	1/2	1/4	3/8	1/2	
2 (51)	.50	n/a	n/a	2 (51)	.80	n/a	n/a	.65	n/a	n/a	
2-1/2 (64)	.67	n/a	n/a	2-1/2 (64)	.90	n/a	n/a	.83	n/a	n/a	
3 (76)	.83	.50	n/a	3 (76)	1.0	.80	n/a	1.0	.65	n/a	
3-1/2 (89)	1.0	.58	n/a	3-1/2 (89)		.85	n/a		.73	n/a	
4 (102)		.69	.50	4 (102)		.91	.80		.85	.65	
4-1/2 (114)		.79	.58	4-1/2 (114)		.98	.85		.96	.74	
5 (127)		.90	.67	5 (127)		1.0	.90		1.0	.83	
5-1/2 (140)		1.0	.75	5-1/2 (140)			.95			.91	
6 (152)			.83	6 (152)			1.0			1.0	
7 (178)			1.0	7 (178)							
8 (203)				8 (178)							

Typical anchor installed through metal deck into lightweight concrete

INSTALLATION INSTRUCTIONS

Manufacturer's Printed Installation Instructions (MPII) are included with each product package. They can also be viewed or downloaded at www.hilti.com (U.S.) and www.hilti.ca (Canada). Because of the possibility of changes, always verify that downloaded MPII are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the MPII.

ORDERING INFORMATION

HDV Anchors

Carbon Steel						
Anchor Thread Size (in.)	Description	Zpk Qty.				
1/4	HDV 1/4	100				
3/8	HDV 3/8	50				
1/2	HDV 1/2	50				

Setting Tools for HDV				
Anchor Thread Size (in.)	Description			
1/4	Setting tool HST 1/4			
3/8	Setting tool HST 3/8			
1/2	Setting tool HST1/2			

