

The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 19.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines.

US&CA: https://submittals.us.hilti.com/PTGVol2/

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or HNATechnicalServices@hilti.com

CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

3.3.11 HCA COIL ANCHOR

PRODUCT DESCRIPTION

HCA coil anchors

Anchor System

HCA coil anchor

Features and Benefits

- HCA hex bolt may be reused four times providing major cost savings.
 A new coil is required for each reuse.
- · Bolt type anchor enables low profile fastenings
- · Preassembled units allow quick production fastening
- Utilizes a disposable, low cost expansion coil which minimizes reuse costs
- Heat treated to Grade 5 specification, which provides

3.3.10

Uncracked concrete

MATERIAL SPECIFICATIONS

1/4-in. HCA manufactured from case hardened AISI 1038 carbon steel with a minimum tensile strength of 100 ksi (690 MPa).

3/8-, 1/2-, 5/8- and 3/4-in. HCA meet the chemical requirements of AISI 1035 carbon steel and are heat treated for a minimum tensile strength of 120 ksi (830 MPa).

Coil is manufactured from carbon steel.

Anchor and coil are zinc plated in accordance with ASTM B633, SC 1.

Figure 1 - HCA specifications

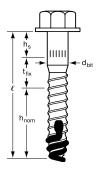


Table 1 - Hilti HCA Coil Anchor specifications

Setting information	Symbol	vmbol Units		Nominal anchor diameter				
Setting information	Symbol	Ullits	1/4	3/8	1/2	5/8	3/4	
Nominal bit diameter	d _o	in.	1/4	3/8	1/2	5/8	3/4	
Embedment mark ¹	h _s	in.	3/8	5/8	5/8	3/4	1	
min. Anchor Length	l	in.	1-3/4	2-1/4	3	3-1/2	4-1/2	
max.	ℓ	in.	3-1/2	5	7	8	10	
Fixture hole diameter	d _h	in.	5/16	7/16	9/16	11/16	13/16	
Installation torque	T _{inst}	ft-lb	10	40	80	130	180	
Minimum base material thickness	h	in.	the greater of 3 or 1.3 times h _{nom}					

¹ Maximum fixture thickness $t = \ell - (h_{nom} + h_s)$

Combined shear and tension loading

$$\left(\frac{N_d}{N_{rec}}\right) + \left(\frac{V_d}{V_{rec}}\right) \le 1.0$$

Table 2 - Hilti HCA allowable concrete and steel capacity (lb)1

Nominal		f' _c = 2,000 psi		f' _c = 4,000 psi		f' _c = 6,000 psi		Allowable steel strength ²	
anchor diameter in.	Nominal embedment in.	Tension ³	Shear	Tension ³	Shear	Tension ³	Shear	Tension	Shear
1 /4	3/4	230	230	325	330	400	400	1 600	835
1/4	1	355	380	500	535	615	655	1,620 83	633
2 /0	1-1/2	650	850	920	1,205	990	1,475	4,375 2,255	2.255
3/8	2	1,005	1,390	1,420	1,965	1,740	2,410		2,255
1 /0	2	1,005	1,515	1,420	2,145	1,740	2,625	7,775	4.005
1/2	3	1,845	3,020	2,605	4,270	3,190	5,230		4,005
	2-3/8	1,300	2,175	1,835	3,075	2,250	3,765	10.150	6,260
5/8	3-7/8	2,705	5,000	3,825	7,070	4,685	8,660	12,150	
0/4	3-1/4	2,080	3,915	2,940	5,540	3,600	6,780	17,495 9,0	0.010
3/4	4-1/2	3,385	6,810	4,790	9,630	5,865	11,705		9,010

¹ Allowable concrete capacities based on a safety factor of 4.

Table 3 - Hilti HCA ultimate concrete and steel capacity (lb)

Nominal		f' _c = 2,000 psi		$f_{c}^{1} = 4,000 \text{ psi}$		f' _c = 6,000 psi		Ultimate steel strength ^{1,2}	
anchor diameter in.	Nominal embedment in.	Tension ²	Shear	Tension ²	Shear	Tension ²	Shear	Tension	Shear
1 //	3/4	920	930	1,305	1,315	1,595	1,610	4.010	0.045
1/4	1	1,420	1,515	2,005	2,145	2,460	2,625	4,910 2	2,945
2 /9	1-1/2	2,610	3,410	3,690	4,825	4,515	5,910	13,255 7,950	7.050
3/8	2	4,015	5,565	5,675	7,865	6,950	9,635		7,950
1 /0	2	4,015	6,065	5,675	8,575	6,950	10,505	23,560 14	14105
1/2	3	7,375	12,080	10,430	17,085	12,770	20,930		14,135
F /0	2-3/8	5,195	8,700	7,345	12,305	9,000	15,070	00.015	00.000
5/8	3-7/8	10,825	19,995	15,305	28,275	18,745	34,630	36,815	22,090
0.74	3-1/4	8,315	15,660	11,760	22,150	14,400	27,125	53,015	31,810
3/4	4-1/2	13,545	27,235	19,160	38,515	23,465	47,170		

¹ Steel strength calculated using f_{uta} A_{nominal} for tension and 0.6 f_{uta} A_{nominal} for shear.

Table 4 - Hilti HCA edge distance and anchor spacing guidelines^{1,2}

	Load Direction	Critical	Minimum	Influence factor ³	
cing	Tension	3.0 h _{nom}	1.0 h _{nom}	$f_{AN} = 0.70$	
Spacing	Shear	2.0 h _{nom}	1.0 h _{nom}	$f_{AV} = 0.70$	
	Tension	1.5 h _{nom}	0.8 h _{nom}	f _{RN} = 0.75	
distance	Shear ⊥ toward edge⁴	2.5 h _{nom}	1.0 h _{nom}	$f_{\rm RV1} = 0.25$	
Edge	Shear II or ⊥ away from edge⁴	2.5 h _{nom}	1.0 h _{nom}	$f_{RV2} = 0.50$	

¹ For edge and spacing distances between critical and minimum spacing/edge distances, use linear interpolation.

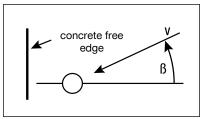


Figure 2 - Oblique shear load towards edge

 $^{2 \ \ \}text{Steel strength calculated using 0.33} \ f_{\text{uta}} \ A_{\text{nominal}} \ \text{for tension and 0.17} \ f_{\text{uta}} \ A_{\text{nominal}} \ \text{for shear.}$

³ Reduce tension capacity by 20% for HCA Hex Head Bolts that are reused. Coils may not be reused.

² Reduce tension capacity by 20% for HCA Hex Head Bolts that are reused. Coils may not be reused.

² Influence factors are cumulative.

³ Influence factor at minimum spacing/edge distance. Influence factor at critical equals 1.0.

⁴ For shear loads in between perpendicular toward edge and parallel with edge, use the following equation, $f_{_{\rm RVB}}$ = 0.25 / (cos ß + 0.5 sin ß) for 55° ≤ ß < 90°. For 0° ≤ ß < 55°, use influence factor for shear perpendicular toward edge. See Figure 2.

3.3.11

INSTALLATION INSTRUCTIONS

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.hilti.com. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

10

10

ORDERING INFORMATION^{1,2}

HCA HEX head

	First we think we so at	
Bit dia.	minimum embedment	Box / qty
1/4	5/8	100
1/4	1-3/8	100
1/4	2-3/8	100
3/8	1/8	100
3/8	7/8	100
3/8	2-7/8	50
1/2	3/8	50
1/2	1-3/8	25
1/2	2-7/8	25
1/2	4-3/8	25
5/8	3/8	25
5/8	1-7/8	25
5/8	4-7/8	20
3/4	1/4	20
	1/4 1/4 1/4 3/8 3/8 3/8 3/8 1/2 1/2 1/2 1/2 1/2 5/8 5/8	1/4 5/8 1/4 1-3/8 1/4 2-3/8 3/8 1/8 3/8 7/8 3/8 2-7/8 1/2 3/8 1/2 1-3/8 1/2 2-7/8 1/2 4-3/8 5/8 3/8 5/8 1-7/8 5/8 4-7/8

Description	Box qty.
HCT 1/4	100
HCT 3/8	100
HCT 1/2	100
HCT 5/8	100
HCT 3/4	50

HCA 3/4 X 6

HCA 3/4 X 10

3/4

1-3/4

5-3/4

¹ All dimensions in inches

² HCA Hex Head Bolts may be reused (4) times. HCT Replacement Coils may not be reused.