Terms of common cooperation / Legal disclaimer

The product technical data published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g., ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products, values only apply to static loading conditions). Technical data applies to the component only -- suitability and capacity of all other components must be checked separately by the responsible engineer (e.g., other assembly components, attachments, base materials, and building structures).

Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve optimum performance (e.g. avoid misuse, modification, overload, corrosion).

As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms, codes, and project specific requirements, prior to using them for any specific facility. This book only serves as an aid to interpret the capacity of the components listed, without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User`s specific jurisdiction and project requirements.
MIQC-S90-BC Base Material Connector - Steel

Designation: MIQC-S90-BC
Item number: 2120272

Corrosion protection:
Hot dipped galvanized per DIN EN ISO 1461:
- Connector: 2.2 mils (55 μm)
- Bolt: 1.8 mils (45 μm)
- Nut: 1.8 mils (45 μm)

Weight:
14.95 lb (6782 g) incl. all components

Description:
Hilti base material connector, 90°, MIQ system, MIQC-S90-BC. Hot dipped galvanized, base material connector typically used for connection of perpendicular Hilti MIQ girder to structural steel with open section perpendicular to structural steel beam. The connected girder is slid onto connection interface of the connector and through bolted by 2 pieces of MIA-OH and self locking nut (both included in the pack) in the first and second hole closest to the end of the girder, the connection to structural steel could be done either by 4 pcs of Hilti MI-SGC M12 (not in pack) beam clamps to flange (width 6.5’’(165mm) - 9.25’’(235mm)) of I-beam or by boxing any structural steel profile (width 6.5’’(165mm) - 9.25’’(235mm)) using Hilti backing plate MIQB-SB (not in pack) and 4x M12 Hilti threaded rods and 4x M12-F-SL WS3/4 self locking nuts (both not in pack) material weight 14.95 lb (6782 g) incl. all connectivity material.

Material properties

<table>
<thead>
<tr>
<th>Material</th>
<th>Yield strength</th>
<th>Ultimate strength</th>
<th>E-modulus</th>
<th>Shear modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>34.08 ksi (235 $\frac{N}{mm^2}$)</td>
<td>52.21 ksi (360 $\frac{N}{mm^2}$)</td>
<td>29000 ksi (20000 $\frac{N}{mm^2}$)</td>
<td>11000 ksi (75845 $\frac{N}{mm^2}$)</td>
</tr>
<tr>
<td>Screw, prevail torque hex nut Class 8.8 - DIN EN 1993-1-8</td>
<td>92.82 ksi (640 $\frac{N}{mm^2}$)</td>
<td>116.03 ksi (800 $\frac{N}{mm^2}$)</td>
<td>29000 ksi (20000 $\frac{N}{mm^2}$)</td>
<td>11000 ksi (75845 $\frac{N}{mm^2}$)</td>
</tr>
</tbody>
</table>

Instruction For Use

Material properties

- **Material Yield strength Ultimate strength E-modulus Shear modulus**
- **Connector**
 - Carbon steel S235JR - DIN EN10025-2 2005.4
 - f_y = 34.08 ksi (235 $\frac{N}{mm^2}$)
 - f_u = 52.21 ksi (360 $\frac{N}{mm^2}$)
 - E = 29000 ksi (20000 $\frac{N}{mm^2}$)
 - μ = 11000 ksi (75845 $\frac{N}{mm^2}$)
- **Screw, prevail torque hex nut Class 8.8 - DIN EN 1993-1-8**
 - f_y = 92.82 ksi (640 $\frac{N}{mm^2}$)
 - f_u = 116.03 ksi (800 $\frac{N}{mm^2}$)
 - E = 29000 ksi (20000 $\frac{N}{mm^2}$)
 - μ = 11000 ksi (75845 $\frac{N}{mm^2}$)
Approved loading cases

| Clamped | Boxed |

Governing Conditions

Methodology:
Connection strength values are determined with a combination of simulation (ANSYS), calculation (Microsoft Excel and Mathcad) and testing.

Standards and codes:

- ANSI/AISC 360-10 Specification for Structural Steel Buildings
- ANSI/AISC 360-10– Inelastic analysis
- AISC Steel Design Appendix 1
- Column Base Plates Guide Series 1
- EN 10025-2 Hot rolled products of structural steels-Part 2: technical delivery conditions for non-alloy structural steels 02.2005

Validity:
Temperature limits: -22°F (-30°C) to 200°F (+93°C).
Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.
MIQC-S90-BC Base Material Connector - Steel

Clamped	Boxed

Loading case: Clamped

Bill of Material for this loading case:
- Connector with all packaged hardware
- 1x MIQC-S90-BC 2120272
- Hardware not included in packaging:
 - Beam clamps
 - 4x MI-SGC M12 233859

Combinations covered by loading case
- Connector used for fixing MIQ girder, perpendicularly to flange (width 6.5” (165mm) - 9.25” (235mm)) of structural steel open section, perpendicularly to structural steel beam

Usage of Values for Design Strength and Allowable Strength

The Design Strength and Allowable Strength tables on the following pages include strength reduction factors:

1. **ASD:** Safety Factor (omega) > 1.0 as per AISC specifications.
2. **LRFD:** Strength Reduction Factor (phi) < 1.0 as per AISC specifications. \(\Omega = \frac{\varphi}{\omega} \) (Reference AISC 360 C-B3-5)

Factored loads are required for input to the given interaction equations. Factored loads are the responsibility of the user. Factored loads are noted as P, V and M.

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MIQ-90 girder, per FEA simulation
2. Beam clamps per analytical calculation
Values for Design Strength and Allowable Strength

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

1. Connection system, including connector, hardware and affected portion of MIQ-90 girder, per FEA simulation

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LRFD*</td>
<td>5.13</td>
<td>7.51</td>
<td>8.38</td>
<td>8.38</td>
<td>2.55</td>
<td>2.55</td>
<td>0.96</td>
<td>0.96</td>
<td>0.56</td>
<td>0.56</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>ASD*</td>
<td>3.42</td>
<td>5.00</td>
<td>5.57</td>
<td>5.57</td>
<td>1.70</td>
<td>1.70</td>
<td>0.64</td>
<td>0.64</td>
<td>0.37</td>
<td>0.37</td>
<td>0.68</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Interaction for LRFD:

\[
\frac{P_{ax}}{F_x} + \frac{V_{ay}}{F_y} + \frac{V_{az}}{F_z} + \frac{M_{ax}}{M_x} + \frac{M_{ay}}{M_y} + \frac{M_{az}}{M_z} \leq 1
\]

Interaction for ASD:

\[
\frac{P_{ax}}{F_x} + \frac{V_{ay}}{F_y} + \frac{V_{az}}{F_z} + \frac{M_{ax}}{M_x} + \frac{M_{ay}}{M_y} + \frac{M_{az}}{M_z} \leq 1
\]

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.
NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

2. Beam clamps per analytical calculation

<table>
<thead>
<tr>
<th></th>
<th>LRFD*</th>
<th>ASD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Fx [kip]</td>
<td>7.04</td>
<td>4.69</td>
</tr>
<tr>
<td>-Fx [kip]</td>
<td>1.48</td>
<td>0.99</td>
</tr>
<tr>
<td>+Fy [kip]</td>
<td>1.48</td>
<td>0.99</td>
</tr>
<tr>
<td>-Fy [kip]</td>
<td>1.48</td>
<td>0.99</td>
</tr>
<tr>
<td>+Fz [kip]</td>
<td>1.48</td>
<td>0.99</td>
</tr>
<tr>
<td>-Fz [kip]</td>
<td>1.48</td>
<td>0.99</td>
</tr>
<tr>
<td>+Mx [kip*ft]</td>
<td>0.52</td>
<td>0.34</td>
</tr>
<tr>
<td>-Mx [kip*ft]</td>
<td>1.39</td>
<td>0.92</td>
</tr>
<tr>
<td>+My [kip*ft]</td>
<td>1.39</td>
<td>0.92</td>
</tr>
<tr>
<td>-My [kip*ft]</td>
<td>1.39</td>
<td>0.92</td>
</tr>
<tr>
<td>+Mz [kip*ft]</td>
<td>1.39</td>
<td>0.92</td>
</tr>
<tr>
<td>-Mz [kip*ft]</td>
<td>1.39</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Interaction for LRFD

Normal force interaction:
The eccentricity e_{Fy} and e_{Fz} between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{P_{ux}}{F_x} + \frac{V_{ux} \cdot e_{Fy}}{M_z} + \frac{V_{ux} \cdot e_{Fz}}{M_y} + \frac{M_{ux}}{M_z} \leq 1$$

with $e_{Fy} = 0.055\text{mm}$ $e_{Fz} = 0.050\text{mm}

Shear force interaction:

$$\left(\frac{V_{ux}}{F_x} \times \left(1 - \frac{P_{ux}}{F_x}\right)\right)^2 + \left(\frac{V_{ux}}{M_z} \times \left(1 - \frac{P_{ux}}{M_z}\right)\right)^2 \leq 1$$

Interaction formula valid only for $P_{ux} > 0$

Interaction for ASD

Normal force interaction:
The eccentricity e_{Fy} and e_{Fz} between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{P_{ux}}{F_x} + \frac{V_{ux} \cdot e_{Fy}}{M_z} + \frac{V_{ux} \cdot e_{Fz}}{M_y} + \frac{M_{ux}}{M_z} \leq 1$$

with $e_{Fy} = 0.055\text{mm}$ $e_{Fz} = 0.050\text{mm}$

Shear force interaction:

$$\left(\frac{V_{ux}}{F_x} \times \left(1 - \frac{P_{ux}}{F_x}\right)\right)^2 + \left(\frac{V_{ux}}{M_z} \times \left(1 - \frac{P_{ux}}{M_z}\right)\right)^2 \leq 1$$

Interaction formula valid only for $P_{ux} > 0$

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.
MIQC-S90-BC Base Material Connector - Steel

Clamped	Boxed

Loading case: Boxed

BOM:
- Connector with all packaged hardware
 - 1x MIQC-S90-BC 2120272
- Hardware not included in packaging:
 - Back (base) plate 2123566
 - Threaded rods 419103
 - Self-locking nut 382897

Combinations covered by loading case
- Connector used for fixing MIQ girder, perpendicularly to flange (width 6.5” (165mm) - 9.25”(235mm)) of structural steel open section, perpendicularly to structural steel beam

Usage of Values for Design Strength and Allowable Strength

The Design Strength and Allowable Strength tables on the following pages include strength reduction factors:

1. **ASD:** Safety Factor (omega) > 1.0 as per AISC specifications.
2. **LRFD:** Strength Reduction Factor (phi) < 1.0 as per AISC specifications. \(\frac{\Omega}{\phi} \) (Reference AISC 360 C-B3-5)

Factored loads are required for input to the given interaction equations. Factored loads are the responsibility of the user. Factored loads are noted as P, V and M

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MIQ-90 girder, per FEA simulation
2. Base plate and through bolts - per analytical calculation
MIQC-S90-BC Base Material Connector - Steel

Clamped Boxed

<table>
<thead>
<tr>
<th></th>
<th>Clamped</th>
<th>Boxed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values for Design Strength and Allowable Strength

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

1. Connection system, including connector, hardware and affected portion of MIQ-90 girder, per FEA simulation

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LRDF</td>
<td>5.13</td>
<td>7.51</td>
<td>8.38</td>
<td>8.38</td>
<td>2.55</td>
<td>2.55</td>
<td>0.96</td>
<td>0.96</td>
<td>0.56</td>
<td>0.56</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>ASD</td>
<td>3.42</td>
<td>5.00</td>
<td>5.57</td>
<td>5.57</td>
<td>1.70</td>
<td>1.70</td>
<td>0.64</td>
<td>0.64</td>
<td>0.37</td>
<td>0.37</td>
<td>0.68</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Interaction for LRFD

\[
\frac{P_{ax}}{F_x} + \frac{V_{ax}}{F_y} + \frac{M_{ax}}{M_x} + \frac{M_{ax}}{M_y} + \frac{M_{ax}}{M_z} \leq 1
\]

Interaction for ASD:

\[
\frac{P_{ax}}{F_x} + \frac{V_{ay}}{F_y} + \frac{M_{ax}}{M_x} + \frac{M_{ax}}{M_y} + \frac{M_{ax}}{M_z} \leq 1
\]

Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.
NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

2. Beam clamps per analytical calculation

<table>
<thead>
<tr>
<th>Group</th>
<th>Interaction for LRFD</th>
<th>Interaction for ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_x [kip]</td>
<td>F_x [kip]</td>
</tr>
<tr>
<td>LRFD</td>
<td>+Fx [kip] 6.86</td>
<td>+Fx [kip] 4.57</td>
</tr>
<tr>
<td></td>
<td>-Fx [kip] 1.42</td>
<td>-Fx [kip] 0.95</td>
</tr>
<tr>
<td></td>
<td>+Fy [kip]</td>
<td>+Fy [kip]</td>
</tr>
<tr>
<td></td>
<td>-Fy [kip]</td>
<td>-Fy [kip]</td>
</tr>
<tr>
<td></td>
<td>+Fz [kip]</td>
<td>+Fz [kip]</td>
</tr>
<tr>
<td></td>
<td>-Fz [kip]</td>
<td>-Fz [kip]</td>
</tr>
<tr>
<td></td>
<td>+Mx [kip*ft]</td>
<td>+Mx [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>-Mx [kip*ft]</td>
<td>-Mx [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>+My [kip*ft]</td>
<td>+My [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>-My [kip*ft]</td>
<td>-My [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>+Mz [kip*ft]</td>
<td>+Mz [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>-Mz [kip*ft]</td>
<td>-Mz [kip*ft]</td>
</tr>
<tr>
<td>ASD</td>
<td>+Fx [kip] 4.57</td>
<td>+Fx [kip] 0.95</td>
</tr>
<tr>
<td></td>
<td>-Fx [kip] 0.95</td>
<td>-Fx [kip] 0.95</td>
</tr>
<tr>
<td></td>
<td>+Fy [kip]</td>
<td>+Fy [kip]</td>
</tr>
<tr>
<td></td>
<td>-Fy [kip]</td>
<td>-Fy [kip]</td>
</tr>
<tr>
<td></td>
<td>+Fz [kip]</td>
<td>+Fz [kip]</td>
</tr>
<tr>
<td></td>
<td>-Fz [kip]</td>
<td>-Fz [kip]</td>
</tr>
<tr>
<td></td>
<td>+Mx [kip*ft]</td>
<td>+Mx [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>-Mx [kip*ft]</td>
<td>-Mx [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>+My [kip*ft]</td>
<td>+My [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>-My [kip*ft]</td>
<td>-My [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>+Mz [kip*ft]</td>
<td>+Mz [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>-Mz [kip*ft]</td>
<td>-Mz [kip*ft]</td>
</tr>
<tr>
<td></td>
<td>M_x [kip*ft] 0.47</td>
<td>M_x [kip*ft] 0.31</td>
</tr>
<tr>
<td></td>
<td>M_y [kip*ft] 0.47</td>
<td>M_y [kip*ft] 0.81</td>
</tr>
<tr>
<td></td>
<td>M_z [kip*ft] 1.22</td>
<td>M_z [kip*ft] 1.22</td>
</tr>
</tbody>
</table>

Interaction for LRFD
Normal force interaction:
The eccentricity e_{Fy} and e_{Fz} between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{P_{hax}}{F_x} + \frac{V_{uxx} e_{Fy}}{M_x} + \frac{V_{ux} e_{Fz}}{M_y} + \frac{M_{ux}}{M_x} \leq 1$$

with $e_{Fy} = 0.055\text{mm}$, $e_{Fz} = 0.050\text{mm}$

Shear force interaction:

$$\left(\frac{V_{uyy}}{F_y} \times \frac{1 - P_{ux}}{F_y} \right)^2 + \left(\frac{V_{uy} e_{Fy}}{M_y} \times \frac{1 - P_{ux}}{F_y} \right)^2 + \frac{M_{uy}}{M_y} \leq 1$$

Interaction formula valid only for $P_{ux} > 0$

Interaction for ASD:
Normal force interaction:
The eccentricity e_{Fy} and e_{Fz} between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula:

$$\frac{P_{hax}}{F_x} + \frac{V_{uxx} e_{Fy}}{M_x} + \frac{V_{ux} e_{Fz}}{M_y} + \frac{M_{ux}}{M_x} \leq 1$$

with $e_{Fy} = 0.055\text{mm}$, $e_{Fz} = 0.050\text{mm}$

Shear force interaction:

$$\left(\frac{V_{uyy}}{F_y} \times \frac{1 - P_{ux}}{F_y} \right)^2 + \left(\frac{V_{uy} e_{Fy}}{M_y} \times \frac{1 - P_{ux}}{F_y} \right)^2 + \frac{M_{uy}}{M_y} \leq 1$$

Interaction formula valid only for $P_{ux} > 0$

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.
In the US: Hilti, Inc. (U.S.)
P.O. Box 21148 Tulsa, OK 74121
Customer Service: 1-800-879-8000
en español: 1-800-879-5000
Fax: 1-800-879-7000

www.us.hilti.com

Hilti is an equal opportunity employer
Hilti is a registered trademark of Hilti, Corp.
©Copyright 2017 by Hilti, Inc. (U.S.)

The data contained in this literature was current as of the date of publication. Updates and changes may be made based on later testing. If verification is needed that the data is still current, please contact the Hilti Technical Support Specialists at 1-800-879-8000 (U.S.) or 1-800-363-4458 (Canada). All published load values contained in this literature represent the result of testing by Hilti or test organizations. Local base materials were used. Because of variations in materials, on-site testing is necessary to determinate performance at any specific site.