Terms of common cooperation / Legal disclaimer

The product technical data published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g. ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products, values only apply to static loading conditions). Technical data applies to the component only -- suitability and capacity of all other components must be checked separately by the responsible engineer (e.g., other assembly components, attachments, base materials, and building structures).

Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve optimum performance (e.g. avoid misuse, modification, overload, corrosion).

As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms, codes, and project specific requirements, prior to using them for any specific facility. This book only serves as an aid to interpret the capacity of the components listed, without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User’s specific jurisdiction and project requirements.
MIC-SC-MAH Base Material Connector - Steel

Designation Item number
MIC-SC-MAH 2174673

Corrosion protection:
Hot dipped galvanized per DIN EN ISO 1461:
Connector: 2.2 mils (55 μm)
Bolt: 1.8 mils (45 μm)
Nut: 1.8 mils (45 μm)

Weight:
20.72 lb (9400 g) incl. components

Description:
Hilti Hot-dipped galvanized baseplate connector, used for anchoring a MI-90 girder to a steel beam at an angle, usually when it’s used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles. For use with M16 hardware.

Material properties:

<table>
<thead>
<tr>
<th>Material</th>
<th>Yield strength</th>
<th>Ultimate strength</th>
<th>E-modulus</th>
<th>Shear modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>S235JR - DIN EN10025-2 2005.4</td>
<td>$f_y = 34.08 \text{ ksi (235 N/mm}^2\text{)}$</td>
<td>$f_u = 52.21 \text{ ksi (360 N/mm}^2\text{)}$</td>
<td>$E = 29000 \text{ ksi (200000 N/mm}^2\text{)}$</td>
<td>$G = 11000 \text{ ksi (75845 N/mm}^2\text{)}$</td>
</tr>
<tr>
<td>Hexagonal head screw, prevail torque hex nut</td>
<td>$f_y = 92.82 \text{ ksi (640 N/mm}^2\text{)}$</td>
<td>$f_u = 116.03 \text{ ksi (800 N/mm}^2\text{)}$</td>
<td>$E = 29000 \text{ ksi (200000 N/mm}^2\text{)}$</td>
<td>$G = 11000 \text{ ksi (75845 N/mm}^2\text{)}$</td>
</tr>
</tbody>
</table>

Instruction For Use:
For both loading cases:

For clamped loading case

For boxed loading case (not attached to the packaging)
Approved loading cases

<table>
<thead>
<tr>
<th>Clamped</th>
<th>Boxed</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Clamped Image]</td>
<td>![Boxed Image]</td>
</tr>
</tbody>
</table>

Governing Conditions

Methodology:
Connection strength values are determined with a combination of simulation (ANSYS®), calculation (Microsoft Excel and Mathcad) and testing.

Standards and codes:
- ANSI/AISC 360-10 Specification for Structural Steel Buildings
- ANSI/AISC 360-10 Appendix 1 Inelastic analysis
- AISC Steel Design Guide Series 1 Column Base Plates
- EN 10025-2 Hot rolled products of structural steels-Part 2: technical delivery conditions for non-alloy structural steels 02.2005

Validity:
Temperature limits: -22°F (-30°C) to 200°F (+93°C).
Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.
Clamped	Boxed
![Clamped Connector](image1.png) | ![Boxed Connector](image2.png)

Loading case: Clamped

Bill of Material for this loading case:

<table>
<thead>
<tr>
<th>Material</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC-SC-MAH</td>
<td>2174673</td>
</tr>
<tr>
<td>Beam clamps</td>
<td>387398</td>
</tr>
</tbody>
</table>

Combinations covered by loading case

Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 9.25” (235mm) - 11.81” (300mm).

Usage of Values for Design Strength and Allowable Strength

The Design Strength and Allowable Strength tables on the following pages include strength reduction factors:

1. **ASD:** Safety Factor (omega) > 1.0 as per AISC specifications.
2. **LRFD:** Strength Reduction Factor (phi) < 1.0 as per AISC specifications. $\Omega = \frac{10}{q}$ (Reference AISC 360 C-B3-5)

Factored loads are required for input to the given interaction equations. Factored loads are the responsibility of the user. Factored loads are noted as P, V and M.

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector and hardware, per FEA simulation
2. Welds - per analytical calculation
3. Beam Clamps - per analytical calculation
NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

1. Connector steel and all connecting hardware

LRFD*

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.75</td>
<td>3.75</td>
<td>1.48</td>
<td>1.48</td>
<td>3.75</td>
<td>3.75</td>
<td>0.52</td>
<td>0.52</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

ASD*

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.50</td>
<td>2.50</td>
<td>0.99</td>
<td>0.99</td>
<td>2.50</td>
<td>2.50</td>
<td>0.34</td>
<td>0.34</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note: Design Strength values for girder Torsion about the α_x-axis ($M_{\alpha x}$) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction for LRFD

Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left[\frac{P_{ux}}{F_x} \right]^2 + \left[\frac{V_{uz}}{F_z} \right]^2 + \frac{V_{uv}}{F_y} + \frac{M_{ux}}{M_x} \leq 1$$

Use of F_{ux}: In case only the force along the brace axis (α_x) is known, determinate load components as follows:

$$P_{ux} = F_{ux} \cdot \cos(\alpha)$$
$$V_{uz} = F_{ux} \cdot \sin(\alpha)$$

Interaction for ASD:

$$\left[\frac{P_{\alpha x}}{F_x} \right]^2 + \left[\frac{V_{\alpha z}}{F_z} \right]^2 + \frac{V_{\alpha y}}{F_y} + \frac{M_{\alpha x}}{M_x} \leq 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (α_x) is known, determinate load components as follows:

$$P_{\alpha x} = F_{\alpha x} \cdot \cos(\alpha)$$
$$V_{\alpha z} = F_{\alpha x} \cdot \sin(\alpha)$$

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.
NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

2. Welds - per analytical calculation

<table>
<thead>
<tr>
<th></th>
<th>LRFD</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66.29</td>
<td>66.29</td>
<td>3.02</td>
<td>3.02</td>
<td>11.74</td>
<td>11.74</td>
</tr>
<tr>
<td></td>
<td>1.87</td>
<td>1.87</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ASD</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44.19</td>
<td>44.19</td>
<td>2.01</td>
<td>2.01</td>
<td>7.83</td>
<td>7.83</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>1.25</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Interaction for LRFD

Note: Design Strength values for girder Torsion about the x-axis \(M_{ux} \) are valid for any bracing angle.

\[
P_{ux} + \frac{V_{uz}}{F_z} + \frac{V_{uy}}{F_y} + \frac{M_{ux}}{M_x} \leq 1
\]

Use of \(F_{ux} \): In case only the force along the brace axis \((ux) \) is known, determinate load components as follows:

\[
P_{ux} = F_{ux} x \cos (\alpha)
\]

\[
V_{uz} = F_{ux} x \sin (\alpha)
\]

Interaction for ASD:

\[
P_{ax} + \frac{V_{az}}{F_z} + \frac{V_{ay}}{F_y} + \frac{M_{ax}}{M_x} \leq 1
\]

Use of \(F_{ax} \): In case only the force along the brace axis \((ax) \) is known, determinate load components as follows:

\[
P_{ax} = F_{ax} x \cos (\alpha)
\]

\[
V_{az} = F_{ax} x \sin (\alpha)
\]

*Values already include LRFD strength reduction (\(\Phi \)) or ASD safety (\(\Omega \)) factors in accordance with AISC, and are based on nominal geometry.
NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

3. Beam Clamps - per analytical calculation

LRFD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal force interaction:</td>
<td>21.57</td>
<td>2.32</td>
<td>2.32</td>
<td>2.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal force interaction:</td>
<td>1.04</td>
<td>1.04</td>
<td>4.60</td>
<td>4.60</td>
<td>6.02</td>
<td>6.02</td>
</tr>
</tbody>
</table>

ASD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal force interaction:</td>
<td>14.35</td>
<td>1.54</td>
<td>1.54</td>
<td>1.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal force interaction:</td>
<td>0.69</td>
<td>0.69</td>
<td>3.07</td>
<td>3.07</td>
<td>4.01</td>
<td>4.01</td>
</tr>
</tbody>
</table>

Interaction for LRFD

Normal force interaction:
The eccentricity e_y and e_z between the point of force transfer channel/connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$
\frac{P_{ax}}{F_s} + \frac{V_{uy} \times e_y}{M_y} + \frac{V_{uz} \times e_z}{M_z} + \frac{M_{ux}}{M_s} \leq 1
$$

with $e_y, e_z = 0.070$ m

Shear force interaction:
- Shear Interaction Equation is only valid for TENSILE P_{ax} loads ($P_{ax} > 0$). Equation is not valid for compressive P_{ax} loads ($P_{ax} < 0$).
- For Shear interaction, user must ADDITIONALLY verify: $P_{ax}/F_s < 1$.

$$
\left(\frac{V_{uy}}{F_s} \frac{1 - P_{ax}}{F_s} \right)^2 + \left(\frac{V_{uz}}{M_s} \frac{1 - P_{ax}}{F_s} \right)^2 + \frac{M_{uz}}{M_s} \leq 1
$$

Note: Due to the fact, that depending on the inclination of the channel, the acting torsional moment M_{ux} can either generate shear or tension, it will be considered in both interactions

Interaction for ASD

Normal force interaction:
The eccentricity e_y and e_z between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$
\frac{P_{ax}}{F_s} + \frac{V_{uy} \times e_y}{M_y} + \frac{V_{uz} \times e_z}{M_z} + \frac{M_{ux}}{M_s} \leq 1
$$

with $e_y, e_z = 0.070$ m

Shear force interaction:
- Shear Interaction Equation is only valid for TENSILE P_{ax} loads ($P_{ax} > 0$). Equation is not valid for compressive P_{ax} loads ($P_{ax} < 0$).
- For Shear interaction, user must ADDITIONALLY verify: $P_{ax}/F_s < 1$.

$$
\left(\frac{V_{uy}}{F_s} \frac{1 - P_{ax}}{F_s} \right)^2 + \left(\frac{V_{uz}}{M_s} \frac{1 - P_{ax}}{F_s} \right)^2 + \frac{M_{uz}}{M_s} \leq 1
$$

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.
MIC-SC-MAH Base Material Connector - Steel

<table>
<thead>
<tr>
<th>Clamped</th>
<th>Boxed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bill of Material for this loading case:

1x MIC-SC-MAH 2174673
1x MIB-SCH 2174676
4x AM16x1000 8.8 HDG…m 419104
8x LW M16 HDG plus washer 2185343
8x M16-F nut 304767

Combinations covered by loading case

Connector used for an angled connection of MI-90 to structural steel profiles (bracing).
For flange width 9.25” (235mm) - 11.81” (300mm).

Usage of Values for Design Strength and Allowable Strength

The Design Strength and Allowable Strength tables on the following pages include strength reduction factors:

1. **ASD:** Safety Factor (omega) > 1.0 as per AISC specifications.
2. **LRFD:** Strength Reduction Factor (phi) < 1.0 as per AISC specifications. $\Omega = \frac{1.5}{\phi}$ (Reference AISC 360 C-B3-5)

Factored loads are required for input to the given interaction equations. Factored loads are the responsibility of the user. Factored loads are noted as P, V and M.

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector and hardware, per FEA simulation
2. Welds - per analytical calculation
3. Base plate and through bolts - per analytical calculation
Values for Design Strength and Allowable Strength

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

<table>
<thead>
<tr>
<th>LRFD*</th>
<th>ASD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td>2.50</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Note: Design Strength values for girders Torsion about the x-axis (M_{ax}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction for LRFD

Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left[\frac{P_{ux}}{F_x} \right]^2 + \left[\frac{V_{uz}}{F_z} \right]^2 + \frac{V_{uv}}{F_y} + \frac{M_{ux}}{M_x} \leq 1$$

Use of P_{ux}: In case only the force along the brace axis (u_x) is known, determinate load components as follows:

- $P_{ux} = F_{ux} x \cos (\alpha)$
- $V_{uz} = F_{ux} x \sin (\alpha)$

Interaction for ASD:

$$\left[\frac{P_{ax}}{F_x} \right]^2 + \left[\frac{V_{az}}{F_z} \right]^2 + \frac{V_{ay}}{F_y} + \frac{M_{ax}}{M_x} \leq 1$$

Use of P_{ax}: In case only the force along the brace axis (a_x) is known, determinate load components as follows:

- $P_{ax} = F_{ax} x \cos (\alpha)$
- $V_{az} = F_{ax} x \sin (\alpha)$

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.
Values for Design Strength and Allowable Strength 2/3

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

2. Welds - per analytical calculation

LRFD*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mx [kip*ft]</td>
<td>66.29</td>
<td>66.29</td>
<td>3.02</td>
<td>3.02</td>
<td>11.74</td>
<td>11.74</td>
</tr>
<tr>
<td>My [kip*ft]</td>
<td>+Mx</td>
<td>-Mx</td>
<td>+My</td>
<td>-My</td>
<td>+Mz</td>
<td>-Mz</td>
</tr>
<tr>
<td>Mz [kip*ft]</td>
<td>1.87</td>
<td>1.87</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

ASD*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mx [kip*ft]</td>
<td>44.19</td>
<td>44.19</td>
<td>2.01</td>
<td>2.01</td>
<td>7.83</td>
<td>7.83</td>
</tr>
<tr>
<td>My [kip*ft]</td>
<td>+Mx</td>
<td>-Mx</td>
<td>+My</td>
<td>-My</td>
<td>+Mz</td>
<td>-Mz</td>
</tr>
<tr>
<td>Mz [kip*ft]</td>
<td>1.25</td>
<td>1.25</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Interaction for LRFD

Note: Design Strength values for girder Torsion about the x-axis (M_{ux}) are valid for any bracing angle.

\[
\frac{P_{ux}}{F_x} + \frac{V_{uz}}{F_z} + \frac{V_{uy}}{F_y} + \frac{M_{ux}}{M_x} \leq 1
\]

Use of F_{ux}: In case only the force along the brace axis (ax) is known, determinate load components as follows:

- $P_{ux} = F_{ux} \times \cos (\alpha)$
- $V_{uz} = F_{ux} \times \sin (\alpha)$

Interaction for ASD:

\[
\frac{P_{ax}}{F_x} + \frac{V_{az}}{F_z} + \frac{V_{ay}}{F_y} + \frac{M_{ax}}{M_x} \leq 1
\]

Use of F_{ax}: In case only the force along the brace axis (ax) is known, determinate load components as follows:

- $P_{ax} = F_{ax} \times \cos (\alpha)$
- $V_{az} = F_{ax} \times \sin (\alpha)$

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.
Values for Design Strength and Allowable Strength

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

3. Beam Clamps - per analytical calculation

LRFD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31.75</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
</tr>
<tr>
<td></td>
<td>Not</td>
<td>decisive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Mx [kip*ft]</td>
<td>Mx</td>
<td>-Mx</td>
<td>+My</td>
<td>-My</td>
<td>+Mz</td>
<td>-Mz</td>
</tr>
<tr>
<td></td>
<td>2.96</td>
<td>2.96</td>
<td>6.25</td>
<td>6.25</td>
<td>8.86</td>
<td>8.86</td>
</tr>
</tbody>
</table>

ASD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.13</td>
<td>4.44</td>
<td>4.44</td>
<td>4.44</td>
<td>4.44</td>
<td>4.44</td>
</tr>
<tr>
<td></td>
<td>Not</td>
<td>decisive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Mx [kip*ft]</td>
<td>Mx</td>
<td>-Mx</td>
<td>+My</td>
<td>-My</td>
<td>+Mz</td>
<td>-Mz</td>
</tr>
<tr>
<td></td>
<td>1.97</td>
<td>1.97</td>
<td>4.17</td>
<td>4.17</td>
<td>5.91</td>
<td>5.91</td>
</tr>
</tbody>
</table>

Interaction for LRFD

Normal force interaction:

\[
\begin{align*}
+F_x + V_{xy} \times e_y + V_{xz} \times e_z + M_{nx} &= \frac{M_x}{Y_x} \\
-M_x &= \frac{M_x}{Y_x}
\end{align*}
\]

\[
F_x \times \left(1 - \frac{P_{ux}}{F_x}\right) + V_{xy} \times \left(1 - \frac{P_{uy}}{F_y}\right) + V_{xz} \times \left(1 - \frac{P_{uz}}{F_z}\right) + M_{nx} \times \left(1 - \frac{P_{ux}}{F_x}\right) = 1
\]

Note: Due to the fact, that depending on the inclination of the channel, the reaction torsional moment \(M_{ox} \) can either generate shear or tension, it will be considered in both interactions.

Shear force interaction:

\[
\begin{align*}
+F_x + V_{xy} \times e_y + V_{xz} \times e_z + M_{nx} &= \frac{M_x}{Y_x} \\
-M_x &= \frac{M_x}{Y_x}
\end{align*}
\]

\[
F_x \times \left(1 - \frac{P_{ux}}{F_x}\right) + V_{xy} \times \left(1 - \frac{P_{uy}}{F_y}\right) + V_{xz} \times \left(1 - \frac{P_{uz}}{F_z}\right) + M_{nx} \times \left(1 - \frac{P_{ux}}{F_x}\right) = 1
\]

Note: Due to the fact, that depending on the inclination of the channel, the reaction torsional moment \(M_{ox} \) can either generate shear or tension, it will be considered in both interactions.

Interaction for ASD

Normal force interaction:

\[
\begin{align*}
+F_x + V_{xy} \times e_y + V_{xz} \times e_z + M_{nx} &= \frac{M_x}{Y_x} \\
-M_x &= \frac{M_x}{Y_x}
\end{align*}
\]

\[
F_x \times \left(1 - \frac{P_{ux}}{F_x}\right) + V_{xy} \times \left(1 - \frac{P_{uy}}{F_y}\right) + V_{xz} \times \left(1 - \frac{P_{uz}}{F_z}\right) + M_{nx} \times \left(1 - \frac{P_{ux}}{F_x}\right) = 1
\]

Note: Due to the fact, that depending on the inclination of the channel, the reaction torsional moment \(M_{ox} \) can either generate shear or tension, it will be considered in both interactions.

Shear force interaction:

\[
\begin{align*}
+F_x + V_{xy} \times e_y + V_{xz} \times e_z + M_{nx} &= \frac{M_x}{Y_x} \\
-M_x &= \frac{M_x}{Y_x}
\end{align*}
\]

\[
F_x \times \left(1 - \frac{P_{ux}}{F_x}\right) + V_{xy} \times \left(1 - \frac{P_{uy}}{F_y}\right) + V_{xz} \times \left(1 - \frac{P_{uz}}{F_z}\right) + M_{nx} \times \left(1 - \frac{P_{ux}}{F_x}\right) = 1
\]

Values already include LRFD strength reduction (\(\Phi \)) or ASD safety (\(\Omega \)) factors in accordance with AISC, and are based on nominal geometry.
Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected.