Terms of common cooperation / Legal disclaimer

The product technical data published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g. ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products, values only apply to static loading conditions). Technical data applies to the component only -- suitability and capacity of all other components must be checked separately by the responsible engineer (e.g., other assembly components, attachments, base materials, and building structures).

Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve optimum performance (e.g. avoid misuse, modification, overload, corrosion).

As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms, codes, and project specific requirements, prior to using them for any specific facility. This book only serves as an aid to interpret the capacity of the components listed, without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User’s specific jurisdiction and project requirements.
MIC-U-MA Base Material Connector - Concrete

Designation

MIC-U-MA

Item number

304806

Corrosion protection:

Hot dipped galvanized per DIN EN ISO 1461:
- Connector: 2.2 mils (55 μm)
- Backing plate: 1.8 mils (45 μm)
- Tooth plate: 1.8 mils (45 μm)
- Bolt: 1.8 mils (45 μm)
- Nut: 1.8 mils (45 μm)

Weight:

5.80 lb (2630 g) incl. components

Description:

Hot dipped galvanized Hilti MI connector, typically used for connecting two MI girders, where one girder is braced / supported by the other at an angle, to improve total load capacity of the structure. One oblong hole enables fine adjustment and is serrated to improve holding. Connector is used on the sides of the girders.

Material properties

<table>
<thead>
<tr>
<th>Material</th>
<th>Yield strength f_y (ksi)</th>
<th>Ultimate strength f_u (ksi)</th>
<th>E-modulus E (ksi)</th>
<th>Shear modulus G (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>235 (235 N/mm²)</td>
<td>360 (360 N/mm²)</td>
<td>29000</td>
<td>11000</td>
</tr>
<tr>
<td>Toothed plate</td>
<td>235 (235 N/mm²)</td>
<td>360 (360 N/mm²)</td>
<td>29000</td>
<td>11000</td>
</tr>
<tr>
<td>Hexagon head screw</td>
<td>640 (640 N/mm²)</td>
<td>800 (800 N/mm²)</td>
<td>29000</td>
<td>11000</td>
</tr>
<tr>
<td>Class 8.8 - DIN EN 1993-1-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instruction For Use:

1. Min. 13 mm (1/2”)
2. Min. 0 mm
3. 2-3x
4. MIC-U-MA

Hardware included per connector:

- 1x pair of MIC-U-MA
- 1x MI-S12-HP 8.8
- 1x MI-EP100
- 2x M12-FL 3/4”
- 1x MIA-TP

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected.

Data version 1.2 | Date 08.2017 | Page 1/5
Approved loading cases

<table>
<thead>
<tr>
<th>Standard</th>
</tr>
</thead>
</table>

Governing Conditions

Methodology:
Connection strength values are determined with a combination of simulation (ANSYS®), calculation (Microsoft Excel and Mathcad) and testing.

Standards and codes:
- ANSI/AISC 360-10 Specification for Structural Steel Buildings
- EN 10025-2 Hot rolled products of structural steels- Part 2: technical delivery conditions for non-alloy structural steels 02-2005

Validity:
Temperature limits: -22°F (-30°C) to 200°F (+93°C).
Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.
MIC-U-MA Base Material Connector - Concrete

Standard

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loading case: Standard

<table>
<thead>
<tr>
<th>Bill of Material for this loading case:</th>
<th>Combinations covered by loading case</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x MIC-U-MA 304806</td>
<td>Connector used for an angular connection of two MI-90 Or MIQ-90 girders (bracket brace)</td>
</tr>
</tbody>
</table>

Usage of Values for Design Strength and Allowable Strength

The Design Strength and Allowable Strength tables on the following pages include strength reduction factors:

1. **ASD:** Safety Factor (omega) > 1.0 as per AISC specifications.
2. **LRFD:** Strength Reduction Factor (phi) < 1.0 as per AISC specifications. $\Omega = \frac{11}{9}$ (Reference AISC 360 C-B3-5)

Factored loads are required for input to the given interaction equations. Factored loads are the responsibility of the user. Factored loads are noted as P, V and M.

Limiting components of capacity evaluated in following tables:

Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation.
NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

LRFD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mx</td>
<td>4.50</td>
<td>4.50</td>
<td>1.51</td>
<td>1.51</td>
<td>2.96</td>
<td>2.96</td>
</tr>
<tr>
<td>My</td>
<td>0.55</td>
<td>0.55</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mz</td>
<td>0.55</td>
<td>0.55</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

ASD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mx</td>
<td>2.99</td>
<td>2.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.97</td>
<td>1.97</td>
</tr>
<tr>
<td>My</td>
<td>0.37</td>
<td>0.37</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mz</td>
<td>0.37</td>
<td>0.37</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note: Design Strength values for girder Torsion about the x-axis \(M_{ax}\) are valid for any bracing angle.

Interaction steel for LRFD:

\[
\left\{ \frac{P}{Fx} \right\}^2 + \left\{ \frac{V_{uz}}{Fz} \right\}^2 + \frac{V_{uv}}{Fy} + \frac{M_{ux}}{M_x} \leq 1
\]

Use of \(F_{ux}\). In case only the force along the brace axis \((\alpha x)\) is known, determinate load components as follows:

- \(P_{ux} = F_{ux} \times \cos(\alpha)\)
- \(V_{uz} = F_{ux} \times \sin(\alpha)\)

Interaction for ASD:

\[
\left\{ \frac{P}{Fx} \right\}^2 + \left\{ \frac{V_{ux}}{Fz} \right\}^2 + \frac{V_{uv}}{Fy} + \frac{M_{ax}}{M_x} \leq 1
\]

Use of \(F_{ux}\). In case only the force along the brace axis \((\alpha x)\) is known, determinate load components as follows:

- \(P_{ux} = F_{ux} \times \cos(\alpha)\)
- \(V_{uz} = F_{ux} \times \sin(\alpha)\)

*Values already include LRFD strength reduction (\(\Phi\)) or ASD safety (\(\Omega\)) factors in accordance with AISC, and are based on nominal geometry.