

PROFIS ENGINEERING DIAPHRAGM

Design Guide

TABLE OF CONTENTS

1.0 OVERVIEW PROFIS ENGINEERING DIAPHRAGM DESIGN MODULE	2
2.0 CODES AND APPROVALS	2
 3.0 STEEL DECK DIAPHRAGM DESIGN AND THEORY 3.1 General Discussion 3.2 Fastener Test Programs 3.3 Diaphragm Shear and Stiffness Calculations 3.4 Design Examples 	3 3 4 6
 4.0 CONCRETE FILLED DECK DESIGN AND THEORY 4.1 General Overview 4.2 Diaphragm Shear and Stiffness Calculations 4.3 Design Examples 	13 13 13 13
5.0 DESIGN OPTIMIZATION AND ALTERNATE SOLUTIONS	16
6.0 DEFLECTION CALCULATIONS 6.1 Definitions 6.2 Calculations 6.3 Design Example	17 17 17 18
7.0 FASTENER ESTIMATION 7.1 Design Example	19 20
8.0 SPECIFICATION TEXT	21

1.0 OVERVIEW PROFIS ENGINEERING DIAPHRAGM DESIGN MODULE

PROFIS Engineering Diaphragm Design Module is a new design module introduced in PROFIS Engineering in 2023 for the design of steel deck diaphragms and concrete filled deck attached to steel structures to transfer lateral loads and uplift loads into the main structural systems. The PROFIS Engineering Diaphragm Design Module has been designed to provide a productive solution for structural engineers to perform code compliant designs.

This design guide is intended to supplement the North American Product Technical Guide Volume 1: Direct Fastening Technical Guide. To see the complete information for Steel Deck products and design information, view the complete Technical Guide at www.hilti.com.

2.0 CODES AND APPROVALS

The Diaphragm Design module is based on the following documents and approvals to perform the engineering calculations for the deck diaphragm designs in the software. Engineering calculations can be displayed in the long report documents that are generated in the software.

Standard	Title
AISI S100	North American Specification for the Design of Cold-Formed Steel Structural Members
AISI S310	North American Standard for the Design of Profiled Steel Diaphragm Panels
SDI DDM04	Steel Deck Institute Diaphragm Design Manual Edition 4
ESR-2776	Steel Deck Diaphragms attached with Hilti Powder-Actuated Fasteners and Hilti SLC Sidelap Connectors
ESR-3693	Steel Deck Diaphragms attached with S-MD 12x24 x 1 5/8 M or S-RT5+ Frame Fasteners
ESR-2197	Steel Deck and Concrete Filled Diaphragms Attached with Hilti Fasteners

This design guide is intended to supplement the North American Product Technical Guide Volume 1: Direct Fastening Technical Guide. To see the complete information for Steel Deck products and design information, view the complete Technical Guide at www.hilti.com.

3.1 GENERAL DISCUSSION

A steel deck diaphragm is a horizontal assembly that transfers in-plane forces to the lateral force resisting system of a structure. This includes roof, floors, and other membrane systems. A diaphragm can be modeled as a horizontal beam with interconnected floor and roof deck units that act as the beam web. Intermediate joists or beams act as web stiffeners and perimeter beams or reinforcement on the diaphragm perimeter act as the beam flanges. Figure 1, based on graphics from the Steel Deck Institute (SDI) Diaphragm Design Manual (DDM), depicts a roof deck diaphragm model.

Design of steel deck diaphragms can be done using the Steel Deck Institute (SDI) Diaphragm Design Manual (DDM) or American Iron and Steel Institute (AISI) S310. These methods provide the basic equations for determining the strength and stiffness of the diaphragm considering the following parameters:

- 1. Steel Deck Profile Type and Thickness
- 2. Supporting Steel Frame Spacing or Deck Span
- 3. Frame Fastener Type and Spacing (connector for steel deck to steel frame)
- 4. Sidelap Fastener Type and Spacing (connector for steel deck panel edge to edge)
- Safety Factors (ASD) or Resistance Factors (LRFD/LSD) based on load type (wind, seismic, other) and fastening type (mechanical, weld)

ICC Evaluation Services (ICC-ES) recognizes the AISI S310 design methods as acceptable in AC43, "Acceptance Criteria for Steel Deck Roof and Floor Systems". An ICC Evaluation Service Report (ESR) for a product based on ICC-ES AC43 provides recognition for use with the International Building Code (IBC). Hilti deck fasteners are currently listed in the SDI Deck Design Manual Version 04 (DDM04) and were evaluated in ICC-ES ESR-3693, ESR- 2776 and ESR-2197. Hilti deck fastener performance with decking systems is also documented in ICC-ES ESR-1169, ESR-2635, ESR-2657 and IAPMO ER-0217, ER-2018, and ER-0329. Additional industry research has shown that metal deck systems, bare and filled, provide a high level of ductility and over strength, when tested as part of a horizontal diaphragm. Metal deck fastened to the structure using specially designed Power-actuated fasteners perform especially well in absorbing excess energy in the inelastic range. The Steel Diaphragm Innovation Initiative, www.steeli.org, has compiled a comprehensive report containing a database of small element and full scale static and cyclic tests.

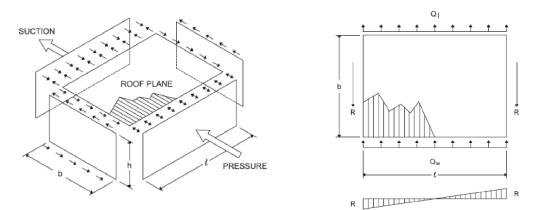


Figure 1 - Diaphragm model

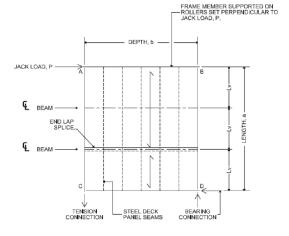
3.0 STEEL DECK DIAPHRAGM DESIGN AND THEORY3.2 FASTENER TEST PROGRAMS

Many small element and full scale test programs have been conducted using Hilti deck fasteners to evaluate their performance.

1. Small element connection tests

Small element connection tests are used to determine fastener pullout, pullover and lap-joint shear strength and stiffness with sheet steel and base steel representative of typical construction. The data is analyzed and used in a predictive model to calculate the performance of the larger steel deck diaphragm assembly or system. These tests are conducted in accordance with the following standards, and shown in Figure 2.

- AISI S905 Test Methods for Mechanically Fastened Cold-Formed Steel Connections
- ASTM E1190 Standard Test Methods for Strength of Power-Actuated Fasteners Installed In Structural Members
- ICC-ES AC70 Acceptance Criteria for Fasteners Power Driven Into Concrete, Steel and Masonry Elements
- ICC-ES AC118 Acceptance Criteria for Tapping Screw Fasteners


Figure 2 - Small element connection tests

Full scale diaphragm system tests are used to determine the strength and stiffness of a larger steel deck diaphragm assembly directly. The data is analyzed and fit in a predictive model to address varying configurations of base steel, steel deck, specific fastener combinations and spans. These tests are conducted in accordance with the following standards and shown in Figures 3, 4 and 5.

- ICC-ES AC43 Acceptance Criteria for Steel Deck Roof and Floor Systems
- AISI S907 Cantilever Test Method for Cold-Formed Steel
 Diaphragms
- ASTM E455 Standard Test Method for Static Load Testing of Framed Floor or Roof Diaphragm Constructions for Buildings

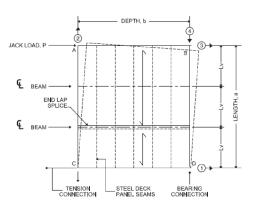


Figure 3 — ICC-ES AC43 diaphragm test frame schematics

3.0 STEEL DECK DIAPHRAGM DESIGN AND THEORY3.2 FASTENER TEST PROGRAMS

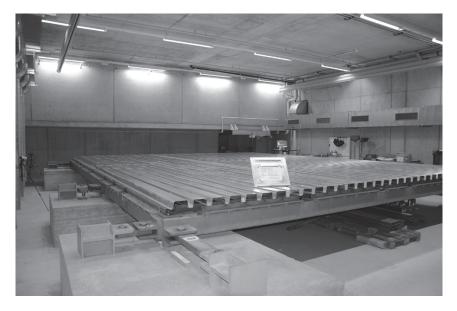


Figure 4 — AC43 diaphragm test frame Fastening Systems Research Laboratory (FSRL), Schaan, Liechtenstein

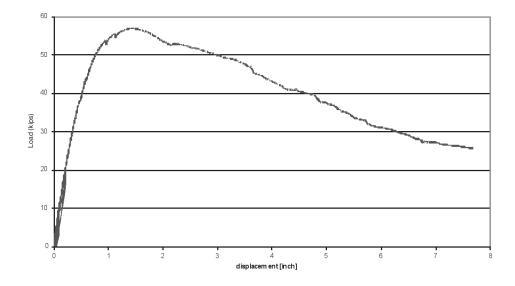


Figure 5 — AC43 deck diaphragm load displacement curve

Displacement (inch)

3.0 STEEL DECK DIAPHRAGM DESIGN AND THEORY 3.3 DIAPHRAGM SHEAR AND STIFFNESS CALCULATIONS

Background: An extensive independent laboratory test program was conducted investigating the performance of steel deck diaphragms attached with Hilti fasteners. The program test scope consisted of full scale diaphragm system tests conducted in accordance with ICC-ES AC43 and AISI S907, as well as comparative small element lap-joint shear tests conducted in accordance with AISI S905 Test Methods for Mechanically Fastened Cold-Formed Steel Connections. The resulting full scale and small element test data was analyzed and predictive equations were developed for the steel deck diaphragm system strength and stiffness using specific combinations of Hilti fasteners.

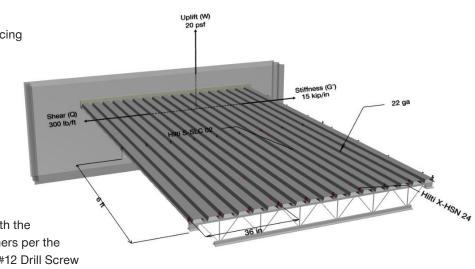
The American Iron and Steel Institute (AISI) Standard for the Design of Profiled Steel Diaphragm Panels (S310) method equations are used as the basis for determining the steel deck diaphragm strength and stiffness. Specific Hilti fastener strength and stiffness values and test data correlation adjustment factors were developed to provide 95% or greater accuracy with test results per ICC-ES AC43 requirements.

The resulting design information is documented in The North American Product Technical Guide Volume 1: Direct Fastening Technical Guide and in ICC-ES ESR-2776, ESR-2197, and ESR-3693. **Design:** The data in the aforementioned ICC-ES Reports are then used with the equations found in AISI S310 Section D to calculate diaphragm strength (S) and stiffness (G') or flexibility factor (F) for Hilti X-HSN 24, X-ENP-19 L15, S-RT5+, or S-MD 12-14x1-5/8 M HWH5 (RT5) frame fasteners and Hilti Sidelap Connectors (SLC). The PROFIS Engineering Diaphragm module is also capable of performing AISI S310 calculations for fastening methods not specific to Hilti such as welding, nonproprietary screws, and button punching of deck.

Uplift and combined loading: The nominal uplift resistance for a given frame fastener and fastening pattern is calculated using methods found in the SDI DDM04 and verified against the uplift demand on the system.

For combined loading, when a uplift load is specified by the user, equations are applied from AISI S310 Section D to find the tension effect on shear frame fastener strength. This will result on a reduced diaphragm shear capacity based on the tensile uplift effect.

3.4 DESIGN EXAMPLES


This side-by-side comparison is intended to highlight the benefits of the Hilti full scale test approvals versus the use of standard equations in SDI. The first case uses the Hilti X-HSN 24 and S-SLC 02 Sidelap Fasteners combined in a system as approved under ICC-ES ESR-2776. The second features a similar system using the X-HSN 24 and a #12 drill screw with calculations based on the information found in SDI DDM04. You can see in the Diaphragm shear calculations that the ICC-ESR 2776 values are used with the Hilti Proprietary system rather than the calculated values from SDI DDM 4th Edition for the Frame Fastener and Sidelap Fastener calculations.

Design Example #1: Steel Roof Deck

1 1/2" B-Deck 50 ksi with bar joists at 6' spacing Nestable deck – 36" panel width Minimum joist thickness – 0.25" Design Method – ASD Wind Loads

System Demands: Diaphragm Shear: Q = 300 plf Uplift: W = 20 psf Stiffness G' = 15 k/in

Compare the Hilti full scale tested system with the Hilti X-HSN-24 and S-SLC 02 Sidelap Fasteners per the ICC ESR-2776 to the Hilti X-HSN24 with the #12 Drill Screw using the calculated values per SDI DDM04.

3.4 DESIGN EXAMPLES

Design Example #1: Steel Roof Deck (continued)

System:

22-gauge deck 36/4 pattern with Hilti X-HSN 24 Fasteners

Hilti S-SLC02 Sidelap Fasteners at 24" o.c. 6

System:

22-gauge deck 36/4 pattern with Hilti X-HSN 24 Fasteners

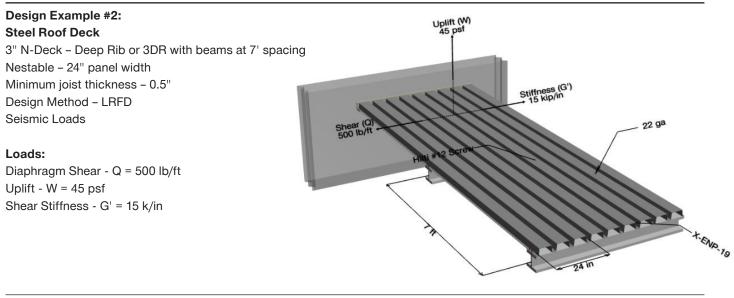
Hilti #12 Drill Screw Sidelap Fasteners at 24" o.c.

Area 1									
Zone	Deck gauge	Frame fastener pattern	Framer fastener	Sidelap connector	Sidelap connector spacing	Diaphragm shear, Q	Uplift, W	Stiffness, G'	Status
1 Full Scale Testing	22 ga	36/4	Hilti X-HSN 24	S-SLC 02 M HWH Sidelap Connector	24 in o.c.	355.49 plf	83.33 psf	16.59 kip/in	ОК
2 SDI Equations	22 ga	36/4	Hilti X-HSN 24	Hilti #12 Drill Screw	24 in o.c.	264.06 plf	83.33 psf	16.59 kip/in	Not Recommended

One or more zones do not m	eet the design requirements					
Design Checks: Design Shear = 355.49 plf >= Q = 300.00 plf => OK Design Uplift = 83.33 psf >= T = 20.00 psf => OK Shear Stiffness G = 16.59 kip/in >= G' = 15.00 kip/in => OK	Design Checks: Design Shear = 264.06 plf >= Q = 300.00 plf => Not Recommended Design Uplift = 83.33 psf >= T = 20.00 psf => OK Shear Stiffness G = 16.59 kip/in >= G' = 15.00 kip/in => OK					
Design OK	Design Not Recommended					
Design Uplift and Shear-Tension Interaction Calculation for Zone A-1 Nominal uplift resistance:	Design Uplift and Shear-Tension Interaction Calculation for Zone A-1 Nominal uplift resistance:					
$T_{n,F} = Hilti ESR$ $ICC ESR-2776, Table 10 and 11$ Roof Deck Construction Handbook $T_{n} = \frac{K \cdot T_{n,F}}{C \cdot I_{v}}$	$T_{n,F} = Hilti ESR \qquad ICC ESR-2776, Table 10 and 11 Roof Deck Construction Handbook T_n = \frac{K \cdot T_{n,F}}{C \cdot I_v}$					
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	$\label{eq:constraint} \begin{array}{c c c c c c c c c c c c c c c c c c c $					
Design uplift resistance: $T_{n,allow} = \frac{T_n}{\Omega} >= T$ $\frac{T_n (psf) \Omega T_{n,allow} (psf) T (psf)}{250 3.00 83 20}$	Design uplift resistance: $T_{n,allow} = \frac{T_n}{\Omega} >= T$ $\frac{T_n (psf) \Omega T_{n,allow} (psf) T (psf)}{250 3.00 83 20}$					
Tension force per fastener: $T_{FF} = \frac{C \cdot I_v \cdot T}{K}$ Roof Deck Construction Handbook	Tension force per fastener: $T_{FF} = \frac{C \cdot I_v \cdot T}{K}$ Roof Deck Construction Handbook					
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	$\frac{C (ft) K I_v(ft) T (psf) T_{FF} (lb)}{3.00 3.00 6.00 20 120}$					
$\frac{P_{nft}}{P_{nf}} + \frac{T}{\min(\frac{P_{nox}}{\Omega_{tov}}, \frac{P_{not}}{\Omega_{tov}})} = 1.0 \rightarrow \frac{Q_{F,red}}{Q_{F}} + \frac{\Omega_{up}}{T_{n,F}} = 1.0 \qquad \text{AISI S310 Eq. D3.1.3-1a}$	Tension effect on shear frame fastener strength: $\frac{P_{nft}}{P_{nf}} + \frac{T}{\min\left(\frac{P_{nox}}{\Omega_{tov}}, \frac{P_{not}}{\Omega_{tov}}\right)} = 1.0 \rightarrow \frac{Q_{Fred}}{Q_{F}} + \frac{\Omega_{up} \cdot T_{FF}}{T_{n,F}} = 1.0 $ AISI S310 Eq. D3.1.3-1a					
$\begin{split} Q_{F,red} &= \left(1 - \frac{\Omega_{up} - T_{FF}}{T_{n,F}}\right) \cdot Q_{F} \\ &= \frac{Q_{F} \left(lb\right) - T_{FF} \left(lb\right) - T_{n,F} \left(lb\right) - \Omega_{up} - Q_{F,red} \left(lb\right)}{1,590 - 120 - 1,500 - 3.00 - 1,208} \end{split}$	$Q_{F,red} = \left(1 - \frac{\Omega_{up} \cdot T_{FF}}{T_{n,F}}\right) \cdot Q_{F}$ $\frac{Q_{F}(lb) T_{FF}(lb) T_{n,F}(lb) \Omega_{up} Q_{F,red}(lb)}{1,489 120 1,500 3.00 1,131}$					

3.4 DESIGN EXAMPLES

Design Example #1: Steel Roof Deck (continued)						
Design OK	Design Not Recommended					
Design Shear / Stiffness Calculation for Zone A-1	Design Shear / Stiffness Calculation for Zone A-1					
Frame fastener strength:	Frame fastener strength:					
Q _F = Hilti ESR ICC ESR-2776, Table 5	$Q_F = 52 \cdot t \cdot (1 - t)$ SDI DDM, Fourth Edition					
$\frac{Q_{F}(lb)}{1.590} \frac{Q_{F,red}(lb)}{1.208}$	$\begin{array}{ c c c c c c }\hline t (in) & Q_{F} (lb) & Q_{F,red} (lb) \\ \hline 0.0295 & 1.489 & 1.131 \\ \hline \end{array}$					
Sidelap connector strength:	Sidelap connector strength:					
Q _s = Hilti ESR ICC ESR-2776, Table 5 Q _s (lb)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
<u>844</u>	$\frac{1}{0.211} \begin{array}{c} 0.0295 \\ 65 \\ 636 \\ 66 \\ 636 $					
Shear strength calculation:	Shear strength calculation:					
$S_{ne} = (2 \cdot \alpha_1 + n_p \cdot \alpha_2 + n_e) \cdot \frac{Q_F}{I}$ AISI S310-20 Eq. D1-3	$S_{ne} = (2 \cdot \alpha_1 + n_p \cdot \alpha_2 + n_e) \cdot \frac{Q_F}{I}$ AISI S310-20 Eq. D1-3					
$S_{ni} = (2 \cdot A \cdot (\lambda - 1) + B) \cdot \frac{Q_F}{I}$ AISI S310-20 Eq. D1-1	$S_{ni} = (2 \cdot A \cdot (\lambda - 1) + B) \cdot \frac{Q_F}{L}$ AISI S310-20 Eq. D1-1					
$\lambda = 1 \frac{D \cdot I_{\downarrow}}{240 \cdot \sqrt{t}} \ge 0.7$	$\lambda = 1 \frac{D \cdot I_v}{240 \sqrt{t}} \ge 0.7$					
$B = n_{s} \cdot \alpha_{s} + \left[2 \cdot n_{p} \cdot \frac{\Sigma (x_{p})^{2}}{w^{2}} + 4 \cdot \frac{\Sigma (x_{p})^{2}}{w^{2}}\right]$ AISI S310-20 Eq. D1-6	$B = n_{s} \cdot \alpha_{s} + \left[2 \cdot n_{p} \cdot \frac{\Sigma (x_{p})^{2}}{w^{2}} + 4 \cdot \frac{\Sigma (x_{p})^{2}}{w^{2}}\right]$ AISI S310-20 Eq. D1-6					
$\alpha_{s} = \frac{Q_{s}}{Q_{F}} - \frac{Q_{s}}{Q_{F}}$	$\alpha_{\rm s} = \frac{\alpha_{\rm s}}{Q_{\rm F}} - \frac{1}{2}$					
$S_{nc} = Q_{F} \cdot \sqrt{\frac{N^{2} \cdot B^{2}}{l^{2} \cdot N^{2} + B^{2}}}$ AISI S310-20 Eq. D1-2	$S_{nc} = Q_F \cdot \sqrt{\frac{N^2 \cdot B^2}{l^2 \cdot N^2 + B^2}}$ AISI S310-20 Eq. D1-2					
$S_{np} = n_d \cdot Q_F \cdot \frac{1}{wt}$ AISI S310-20 Eq. D1-4a	$S_{np} = n_d \cdot Q_F \cdot \frac{1}{wt}$ AISI S310-20 Eq. D1-4a					
$\mathbf{S}_{n} = Min(\mathbf{S}_{ne}; \mathbf{S}_{n}; \mathbf{S}_{nc}; \mathbf{S}_{np}) - \mathbf{S}_{ne} \mathbf{S}_{ne} \mathbf{S}_{np} \mathbf{S}_{ne} \mathbf{S}_{np} \mathbf{S}_{ne} \mathbf{S}_{np} \mathbf{S}_{ne} \mathbf{S}_{np} \mathbf{S}_{ne} \mathbf{S}_{np} \mathbf$	$S_n = Min(S_{ne}; S_{ni}; S_{nc}; S_{np}) -$					
$S_n = S_n \cdot c$ -	$S_n = S_n \cdot C$ -					
A c D (in) I (ft) I _v (ft) N (ft ⁻¹) n _d	A D (in) I (ft) I_v (ft) N (ft ⁻¹) n_d					
1 1.149 1.470 18.00 6.00 1.000 1.000	1 1.470 18.00 6.00 1.000 1.000					
$\frac{n_{e}}{9.000} \frac{n_{p}}{2} \frac{n_{s}}{9.000} \frac{Q_{F}(lb)}{1.208} \frac{t(in)}{0.0295} \frac{W(in)}{36.000} \frac{W_{t}(in)}{6.000}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\frac{\alpha_1 \alpha_2 \Sigma(x_p)^2/W^2 \Sigma(x_p)^2/W^2 B \alpha_s \lambda}{1.333 1.333 0.556 0.556 10.731 0.698 0.786}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\label{eq:scalar} \begin{array}{ c c c c c c } S_{nc}(plf) & S_{nc}(plf) & S_{n}(plf) & S_{n}(plf) \\ \end{array}$	$S_{nc}(plf) = S_{ne}(plf) = S_{ni}(plf) = S_{np}(plf) = S_{n}(plf)$					
619 962 692 2,417 711	<u>528 901 570 2,263 528</u>					
Design shear strength:	Design shear strength:					
	S					
$S_{n,allow} = \frac{S_n}{\Omega}$	$S_{n,allow} = \frac{S_n}{\Omega}$					
$S_n(plf)$ Ω $S_{n,allow}(plf)$	$S_n(plf)$ Ω $S_{n,allow}(plf)$					
711 2.00 355	528 2.00 264					
Check for buckling:	Check for buckling:					
$S_{nb} = \frac{7890}{l_v^2} \cdot \left(\frac{l_s t_s^3 \cdot d}{s}\right)^{0.25}$	$S_{nb} = \frac{7890}{l_v^2} \cdot \left(\frac{l^3 \cdot t^3 \cdot d}{s}\right)^{0.25}$					
$S_{nb,allow} = \frac{S_{nb}}{\Omega}$	$S_{nb,allow} = \frac{S_{nb}}{\Omega}$					
d (in) l (in ⁴ /ft) l _v (ft) s (in) t (in) S _{nb} (plf) Ω	$\label{eq:constraint} \underline{ \mbox{d}\ (in) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					
3.000 0.178 6.00 8.189 0.0295 3,955 2.00	6.000 0.178 6.00 8.189 0.0295 3,955 2.00					
S _{nb,allow}	S _{nb,allow}					
1,978	1,978					



3.4 DESIGN EXAMPLES

Design Example #1: Steel Roof Deck (continued)							
Design OK	Design Not Recommended						
Design Shear / Stiffness Calculation for Zone A-1	Design Shear / Stiffness Calculation for Zone A-1						
Governing:	Governing:						
$S_{n,gov} = Min (S_{n,allow} \cdot S_{nb,allow}) \ge Q$	$S_{n,gov} = Min (S_{n,allow} \cdot S_{nb,allow}) \ge Q$						
$S_{n,allow}$ (plf) $S_{nb,allow}$ (plf) $S_{n,gov}$ (plf) Q (plf)	$S_{n,allow}$ (plf) $S_{nb,allow}$ (plf) $S_{n,gov}$ (plf) Q (plf)						
355 1,978 355 300	264 1,978 264 300						
Frame fastener flexibility:	Frame fastener flexibility:						
S_{e} = Hilti ESR ICC ESR-2776, Table 6	$S_{F} = \frac{1.25}{1000 \cdot \sqrt{t}}$ AISI S310-20 Section D5.2						
s S _F (in/kip)	t (in) S_{F} (in/kip)						
0.0073	0.0295 0.0073						
Sidelap connector flexibility:	Sidelap connector flexibility: $S_s = \frac{3}{1000 \cdot \sqrt{t}}$ AISI S310-20-Section D5.2						
S _s = Hilti ESR ICC ESR-2776, Table 6 S _s (in/kip)	$S_s = \frac{1}{1000 \cdot \sqrt{t}}$ AISI S310-20-Section D5.2						
0.0175	t (in) S _s (in/kip)						
	0.0295 0.0175						
Shear Stiffness / Flexibility Factor Calculation:	Shear Stiffness / Flexibility Factor Calculation:						
$G' = \frac{E \cdot t}{2.6 \cdot \frac{s}{d} + {}_{\rho} D_{n} + C}$ AISI S310-20 Eq. D5.1.1-1	$G' = \frac{E \cdot t}{2.6 \cdot \frac{s}{d} + {}_{p}D_{n} + C}$ AISI S310-20 Eq. D5.1.1-1						
$G' = \frac{E \cdot t}{2.6 \cdot \frac{s}{d} + 0.9 \cdot \frac{D}{T} + K1 \cdot I} - \frac{E \cdot t}{2.6 \cdot \frac{s}{d} + 0.9 \cdot \frac{D}{T} + K1 \cdot I}$	$G' = \frac{E \cdot t}{2.6 \cdot \frac{s}{d} + 0.9 \cdot \frac{D}{T} + K1 \cdot I} - $						
$K1 = E \cdot t \cdot \frac{S_F}{W} \cdot \frac{2}{2 \cdot \alpha_1 + n_p \cdot \alpha_2 + 2 \cdot n_s \cdot \frac{S_s}{S_s}} -$	$K1 = E \cdot t \cdot \frac{S_{F}}{W} \cdot \frac{2}{2 \cdot \alpha_1 + n_{p} \cdot \alpha_2 + 2 \cdot n_{s} \cdot \frac{S_{r}}{S_{s}}} -$						
$F = \frac{1000}{G'}$ -	$F = \frac{1000}{G'}$ -						
D (in) d (in) E (ksi) l (in) s (in) t (in) W (in)	D (in) d (in) E (ksi) l (in) s (in) t (in) W (in)						
10,314.600 6.000 29,500.000 216.000 8.189 0.0295 36.000	10,314.600 6.000 29,500.000 216.000 8.189 0.0295 36.000						
K1 (in [.]) G' (kip/in) F (in/kip)	K1 (in ^{.1}) G' (kip/in) F (in/kip)						
0.0274 16.5924 0.0603	0.0274 16.5924 0.0603						

3.4 DESIGN EXAMPLES

System:

22-gauge deck 24/8 pattern with Hilti X-ENP 19 Fasteners

Hilti #12 Drill Screw Sidelap Fasteners at 24" o.

Zone	Deck gauge	Frame fastener pattern	Framer fastener	Sidelap connector	Sidelap connector spacing	Diaphragm shear, Q	Uplift, W	Stiffness, G'	Status
1 Typical	22 ga	24/8	X-ENP-19	Hilti #12 Drill Screw	24 in o.c.	577.08 plf	424 psf	24.77 kip/in	OK

Design Checks:

 Design Shear
 = 577.08 plf >= Q = 500.00 plf => OK

 Design Uplift
 = 424 psf >= T = 45.00 psf => OK

 Shear Stiffness G
 = 24.77 kip/in >= G' = 15.00 kip/in => OK

Design OK

Design Uplift and Shear-Tension Interaction Calculation for Zone A-1 Nominal uplift resistance:

T__ = Hilti ESR

$T_{n} = \frac{K \cdot T_{n,F}}{C \cdot I_{v}}$				
C (ft)	К	l _v (ft)	T _{n,F} (lb)	T _n (psf)
2.00	6.00	7.00	1,980	849

Design uplift resistance:

 $T_{n.allow} = Tn \cdot Ø$

T _n (psf)	ø	T _{n,allow} (psf)	T (psf)
849	0.500	424	45

ICC ESR-2776, Table 10 and 11

3.4 DESIGN EXAMPLES

	Example #2: St			-	
					gn OK
	plift and Shear-Ten orce per fastener:	sion Interaction	on Calculation	1 for Zone A-1	
rension i	orce per lastener.				
$T_{FF} = \frac{C \cdot I_v}{\kappa}$	·т				Roof Deck Construction Handb
'' K					
C (f	ft) K	I _v (ft)	T (psf)	T _{FF} (lb) 105	_
2.0	6.00	7.00	45	105	
Tension e	effect on shear fran	ne fastener sti	rength:		
P _{nft}		$Q_{F,red} + T_{F}$	^F - 10		AISI S310 Eq. D3.1.
P _{nf} mir	$\frac{T}{n(\emptyset_{nov} \cdot P_{nov}, \emptyset_{tot} \cdot P_{not})} = 1$	$Q_{\rm F} = \frac{1}{Q_{\rm F}} + \frac{1}{Q_{\rm up}}$	- 1.0 •T _{n.F}		Alor 0010 Eq. Do.1.
0 = (1	- ^T). O				
Greed - (1	$-\frac{T_{FF}}{\omega_{up}\cdot T_{n,F}}$ $(Q_F$				
Q _F (lb)	T _{cc} (lb)	T ₋ (lb)	Ø _{up}	Q _{rud} (lb)	
1,603	T _{FF} (lb) 105	T _{n,F} (lb) 1,980	0.500	Q _{F,red} (lb) 1,433	-
-	hear / Stiffness Cal stener strength:	culation for Z	one A-1		
$Q_F = 56 \cdot t$	-				SDI DDM, Fourth Edi
	- ()				
t (ir		Q _F (lb)		Q _{F,red} (lb) 1.433	-
0.02	.95	1,603		1,433	
Sidelap c	onnector strength:	1			
-	(t ³ · d) ^½ · F				SDI DDM, Fourth Edi
-	-			0 (11)	
d (in)	F _u (ks 55	1)	t (in) 0.0295	Q _s (lb) 538	-
0.211			0.0200	000	
Shear stro	ength calculation:				
$S_{aa} = (2 \cdot c)$	$\alpha_1 + n_p \cdot \alpha_2 + n_e \cdot \frac{Q_F}{I}$				AISI S310-20 Eq. [
	$A \cdot (\lambda - 1) + B) \cdot \frac{Q_F}{L}$				AISI S310-20 Eq. I
					AIGI 3310-20 EQ. I
$\lambda = 1 \frac{3}{240}$	$\frac{l}{1 \cdot \sqrt{t}} \ge 0.7$ s + $\left[2 \cdot n_{p} \cdot \frac{\Sigma (x_{p})^{2}}{w^{2}} + 4 \right]$	$\sum (y_i)^2$			
$B = n_{s} \cdot \alpha_{s}$	$_{s} + \left[2 \cdot n_{p} \cdot \frac{2 (n_{p})}{w^{2}} + 4 \right]$	$\cdot \frac{2(X_{e})^{-}}{W^{2}}$			AISI S310-20 Eq. [
$\alpha_s = \frac{Q_s}{Q_F}$		-			
Q _F S _{nc} = Q _F .	$\sqrt{\frac{N^2 \cdot B^2}{l^2 \cdot N^2 + B^2}}$				AISI S310-20 Eq. [
$S_{np} = n_d \cdot 0$					AISI S310-20 Eq. D
					, dei collo 20 Eq. D
$S_n = Min(S)$	$S_{ne}; S_{ni}; S_{nc}; S_{np})$				
А	D (in) I (f				_
0	3.000 21.0	00 7.00	3.0		
	n _p n _s	Q _F (lb)		W (in) w _t (in)	-
n _e	2 10.500			4.000 8.000	
10.500				~ \	
10.500 α ₁	$\alpha_2 \qquad \Sigma(x_0)^2/W^2$		B	α _s λ	-
10.500	2.600 1.046	$\frac{\Sigma(x_{p})^{2}/W^{2}}{1.046}$		0.375 0.700	-

3.0 STEEL DECK DIAPHRAGM DESIGN AND THEORY

3.4 DESIGN EXAMPLES

Design Exan	nple #2:	Steel I	Roof De	ck (cont	tinued)		
						Desi	IN OK
Design Shear /	Stiffness (Calculat	ion for Zo	ne A-1			
Design shear st	rength:						
$S_{n,allow} = S_n \cdot Ø$							
S _n (plf)			ø		S _{n,}	_{allow} (plf) 577	
824			0.700			577	
Check for buck	ling:						
$S_{nb} = \frac{7890}{l_v^2} \cdot \left(\frac{l^3}{s}\right)^2$	$\left(\frac{t^3 \cdot d}{s}\right)^{0.25}$						AISI S310-20 (Eq. D2.1-1
$S_{nb,allow} = S_{nb} \cdot Ø$							
d (in) I (in4/	ft) I _v (f	t) s	; (in)	t (in)	S _{nb} (plf)	ø	
8.000 0.80	8 7.0	0 12	2.863	0.0295	8,674	0.800	
		S _{nb} a	_{illow} (plf)				
			,940				
Governing:							
$S_{n,gov} = Min (S_{n,allo})$	$(\mathbf{s}_{nb,allow})$	≥Q					
S _{n,allow} (plf)	S _{nb,all}	_w (plf)		S _{n,gov} (plf)		Q (plf)	
577	6,9	940		577		500	
Frame fastener	flexibility:						
$S_{F} = \frac{0.75}{1000 \cdot \sqrt{t}}$							AISI S310-20 Section D5.2
t	(in)		S _F (in/kip)			
0.0	295			0044			
Sidelap connec	tor flexibil	ity:					
		-					AIGI CO10, 00 Contine DE (
$S_{s} = \frac{3}{1000 \cdot \sqrt{t}}$							AISI S310-20 Section D5.2
t	(in)		S. (in/kip)			
	295			0175			
Shear Stiffness	-	y Facto	r Calculati	ion:			
$G' = \frac{E \cdot t}{2.6 \cdot \frac{s}{d} + p_n D_n + C}$							AISI S310-20 Eq. D5.1.1-
$G' = \frac{E \cdot t}{2.6 \cdot \frac{s}{d} + 0.9 \cdot \frac{s}{d}}$	D +K1·I						
$K1 = E \cdot t \cdot \frac{S_{F}}{W} \cdot$	$\frac{2}{2 \cdot \alpha_1 + n_p \cdot \alpha_2 + 2}$	$\cdot n_{s} \cdot \frac{S_{F}}{S_{c}}$					
$F = \frac{1000}{G'}$		a					
D (in) d		(ksi)	l (in)	s (in)	t (in)	W (in)	
	000 29,5	500.000	252.000	12.863	0.0295	24.000	
K1 (in-1)			' (kip/in)			n/kip)	
0.0202		2	4.7746		0.0	0404	

4.0 CONCRETE FILLED DIAPHRAGM DESIGN AND THEORY

4.1 GENERAL OVERVIEW

Design equations for calculating steel deck diaphragm strength (S) and stiffness (G') or flexibility factor (F) with Hilti X-HSN 24, X-ENP-19 L15 or S-MD 12-24x1-5/8 M HWH5 (RT5) frame fasteners and Hilti Sidelap Connectors (SLC) are provided. The equation numbers correspond to the equation numbers provided in the AISI S310.

4.2 DIAPHRAGM SHEAR AND STIFFNESS CALCULATIONS

For concrete filled diaphragms, the equations of AISI S310 Section D4 are used to determine the shear capacity of the diaphragm. Similar to roof deck calculations, users may select a design method from Allowable Stress Design (ASD), Load Resistance Factor Design (LRFD), or Limit States Design (LSD) for these calculations. Uplift is not taken into account for concrete filled diaphragms due to the effect of the concrete weight. The software features multiple concrete types that users may select when modeling including:

- · Lightweight insulation concrete without board in fill
- · Lightweight insulation concrete with board in fill
- Structural lightweight concrete
- Structural normalweight concrete
- Structural sand-lightweight concrete

4.3 DESIGN EXAMPLES

Design Example #1:

Structural Normal Weight Concrete-filled Deck 3000 psi Normal Weight Concrete 4 inches of concrete fill over the top of a composite deck 2 x12 with bar joists at 6' spacing Nestable deck - 36" panel width Minimum joist thickness - 0.25" Design Method - ASD Wind Loads Loads: Diaphragm Shear: Q = 300 plf Stiffness G' = 15 k/in

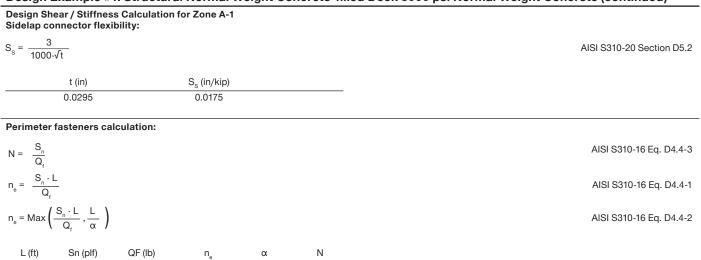
System: 22-gauge deck 36/4 pattern with Hilti S-RT5+ M9 Screw Fasteners

Hilti S-SLC02 Sidelap Fasteners at 24" o.c.

Zone	Deck gauge	Frame fastener pattern	Framer fastener	Sidelap connector	Sidelap connector spacing	Diaphragm shear, Q	Uplift, W	Stiffness, G'	Status
1 Zone	22 ga	36/4	S-RT5+ Screw	S-SLC 02 M HWH Sidelap Connector	24 in o.c.	5498.59 plf	0.00 psf	3898.95 kip/in	ОК

4.0 CONCRETE FILLED DIAPHRAGM DESIGN AND THEORY

4.3 DESIGN EXAMPLES


Design Example #1: Structural Normal Weight Concrete-filled Deck 3000 psi Normal Weight Concrete (continued) Design Shear / Stiffness Calculation for Zone A-1 Frame fastener strength: AISI S100 Eq. J4.3.1-4 $Q_F = 2.7 \cdot t_1 \cdot d \cdot F_{u1}$ d (psf) F_{u1} (ksi) t₁ (in) Q_F (lb) 0.228 0.0295 817 45 Sidelap connector strength: AISI S100 Eq. J4.3.1-1 $Q_{s} = 4.2 \cdot (t_{3} \cdot d)^{\frac{1}{2}} \cdot F_{u1}$ d (in) F_{u1} (ksi) t (in) Q_s (lb) 0.211 0.0295 440 45 Shear strength calculation: $S_n = k_c \cdot \lambda_{LW} \cdot b \cdot t_c \sqrt{f'_c}$ AISI S310-20 Eq. D4.1.1-1 $k_c = 3.2/1000$ AISI S310-20 Eq. D4.1.1-2a $t_c = t_a + n_{sc} \cdot t \cdot \frac{d}{s}$ AISI S310-20 Eq. D4.1.1-3 $n_{sc} = \frac{E}{E_c}$ AISI S310-20 Eq. D4.1.1-4 ACI 318-19- Eq. 19.2.2.1.a $E_{c} = W_{c}^{1.5} \cdot 33 \cdot \sqrt{f'_{c}}$ d (in) b (in) E (psi) f'_c (psi) s (in) r (in) t_a (in) 12.000 12.000 29,500,000.000 3,000 14.472 0.0295 5.0000 w_c (lb/ft²) $\lambda_{_{LW}}$ E_c (psi) n_{sc} t (in) S_n (plf) 3,155,924.251 5.2286 10,997 145.0 1.00 9.347 Design shear strength: S_n $S_{n,allow} = \frac{G_n}{\Omega}$ S_n (plf) Ω $S_{n,allow}$ (plf) 10,997 2.00 5,499 Frame fastener flexibility: $S_{F} = \frac{1.25}{1000 \cdot \sqrt{t}}$ AISI S310-20 Section D5.2 t (in) S_c (in/kip)

4.0 CONCRETE FILLED DIAPHRAGM DESIGN AND THEORY

4.3 DESIGN EXAMPLES

Design Example #1: Structural Normal Weight Concrete-filled Deck 3000 psi Normal Weight Concrete (continued)

Note: When shear studs are included, the perimeter fastener spacing may not be relevant. Shear studs are assumed to transfer the diaphragm shear forces to the vertical lateral force resisting elements. The engineer should check the shear studs to determine if there is sufficient capacity for diaphragm forces in addition to composite beam action.

13.5

Shear stiffness / flexibility factor calculation:

817

242.5

3.0

10,997

18.00

$G' = \frac{E \cdot t}{2.6 \cdot \frac{s}{d}}$ $G' = \frac{E \cdot t}{2.6 \cdot \frac{s}{d}}$						
$K1 = E \cdot t \cdot \frac{1000}{G'}$						
G' d (in) 12.000	d _c (in) 4.000	E (psi) 29,500,000.000	f' _c (psi)	l (in) 216.000	n _p 2	n _s 9.000
s (in) 14.472	S _F (in/kip) 0.0073	S _s (in/kip) 0.0175	t (in) 0.0295	W (in) 36.000	α ₁ 1.333	α ₂ 1.333
K1 (in ⁻¹) 0.0274		G' (k 3,898	ip/in) .9531		F (in, 0.00	

5.0 DESIGN OPTIMIZATION AND ALTERNATE SOLUTIONS

The Diaphragm Design Module offers several ways to find cost effective productive solutions to deck diaphragm design problems through design optimization solutions offered in the software. The design optimization selects a system based on the total cost of the installed system and offers a solution for the most efficient system based on the loads entered for the design. The end user can allow the software to optimize all parameters against the system demand to get the most optimized result. However, some parameters can be set by other conditions, for example the deck gauge may already be selected to account for snow or dead loads. Therefore the software allows the user to pre-select existing parameters and optimize the system for the remaining parameters. The optimization takes into account the number and cost of the fasteners, the cost of the deck material, the speed of the installation, and returns the most cost-effective system for your project.

• • •	pe		Loads (ASD)						Diaphragm Details (Opti	onal)			> Results			
÷		Q	w	G'	Deck Gauge		Pattern		Frame Fastener 🕕		Sidelap Connection	Sidelap	Q	w	G'		
÷	-4-	300 lb/ft	20 psf	15 kip/in	22 ga	- 3	36/4	•	Hilti X-HSN 24	•	S-SLC 02 M HWH Sidelap *	24 in	355.49 lb/ft	83 psf	16.59 kip/in	۲	
<u>_</u>	-4-	300 lb/ft	20 psf	15 kip/in	22 ga	- 3	36/4	•	Hilti X-HSN 24	•	Hilti #12 Drill Screw	17 in	306.11 lb/ft	83 psf	16.96 kip/in	۲	
Zone III Scale Testing DI Calculations	II Scale Testing	Il Scale Testing	Il Scale Testing 💝 🥠 300 lb/ft	Il Scale Testing 💝 帅 300 lb/ft 20 psf	Ill Scale Testing 🐲 🎶 300 lb/ft 20 psf 15 kip/in	Il Scale Testing 💝 🎶 300 lb/ft 20 psf 15 kip/in 22 ga	Il Scale Testing 💮 🥠 300 lb/ft 20 psf 15 kip/in 22 ga 🍝	Il Scale Testing 💮 🔶 🔶 300 lb/ft 20 psf 15 kip/in 22 ga - 38/4	Il Scale Testing 🐲 🕂 300 lb/ft 20 psf 15 kip/in 22 ga - 30/4 -	Il Scale Testing 💮 🔶 👍 300 lb/ft 20 psf 15 kip/in 22 ga ^ 38/4 ^ Hilti X-HSN 24	Il Scale Testing 😓 🕂 300 lb/tt 20 psf 15 kip/in 22 ga - 38/4 - Hilti X-HSN 24 -	Il Scale Testing 😓 🕂 300 lb/tt 20 psf 15 kip/in 22 ga - 30/4 - Hilti X-HSN 24 - S-SLC 02 M HWH Sidelap	Il Scale Testing 🦛 🦣 300 lb/tt 20 psf 15 kip/in 22 ga - 30/4 - Hilti X-HSN 24 - S-SLC 02 M HWH Sidelap 24 in	Il Scale Testing 😓 🎶 300 lb/tt 20 psf 15 kip/in 22 ga - 30/4 - Hilti X-HSN 24 - S-SLC 02 M HWH Sidelap 24 in 355.49 lb/ft	II Scale Testing 😓 🕂 20 ps/ 15 kip/in 22 ga 30/4 Hitti X-HSN 24 5-SLC 02 M HWH Sidelap 24 in 355.40 b/ft 83 ps/	Il Scale Testing 🦛 👫 200 lb/ft 20 psf 15 kip/in 22 ga 30/4 Hilti X-HSN 24 S-SLC 02 M HWH Sidelap 24 in 355.49 lb/ft 83 psf 16.59 kip/in	ll Scale Testing 😓 🕂 300 lb/ft 20 psf 15 kip/in 22 ga 🔹 30/4 🔹 Hilti X-HSN 24 🛸 S-SLC 02 M HWH Sidelap 24 in 355.40 lb/ft 83 psf 16.50 kip/in 🚳
	÷				300 lb/ft 20 psf 15 kip/in	22 ga	22 ga ∽	300 lb/ft 20 psf 15 kip/in 22 ga ^ 36/4	€ 300 lb/ft 20 psf 15 kip/in 22 ga - 38/4 -		300 lb/ft 20 psf 15 kip/in 22 ga ▲ 38/4 ▲ Hilti X-HSN 24 ▲		** 300 lb/t 20 psf 15 kip/in 22 ga 30/4 Hilti X-HSN 24 S-SLC 02 M HWH Sidelap 24 in	** 300 lb/ft 20 psf 15 kip/in 22 ga 30/4 Hilti X-HSN 24 S-SLC 02 M HWH Sidelap 24 in 355.49 lb/ft	** 300 lb/t 20 psf 15 kip/in 22 ga 30/4 Hitti X-HSN 24 S-SLC 02 M HWH Sidelap 24 in 355.40 lb/tt 83 psf	Image: Second	Image: style

You do not need to do a design using the optimization function; however, you may not be using the most cost-effective system for your designs. If you would like to review alternative solutions, you can select the "Other Solutions" button at the bottom of the Zones panel. This allows you to compare alternative solutions to the selected solution whether you have optimized or selected a solution to see other solutions that work for your loads. You can select up to three solutions to be included in the summary table that is included in the report.

Zone									
	work Gauge	Pattern	Frame Fastaner	Sidelap Connector	Sidelap Connector Specing	Sheer Utilization	Uplift Utilization	Strear Stiffrees	Cost Ind
	22 ga	35.4	S-R75+ Sorev	S-SLC 02 M HWH Sidelap Connector	24 10	5.40%	044	3,898.95 kg/n	0
Altern	ative Solutions								
	Deck Gauge	Pattern	Frame Fasterier	Sidelap Connector	Sidelap Connector Spacing	Shear Utilization	Uplift Utilization	Shear Stiffness	Cost Ind
	22 ga	38/4	HIS X-HSN 24	5-SLC 02 M HWH Sidelap Connector	Pin	0.4796	0%	124.064.14 kip/n	1.00
	22 ga	30/4	His X-H\$V24	S-SLC 01 M HWH Sidelap Connector	0 in	0.47%	0%	124,004.14 kip/n	1.00
	22 ge	35/4	HIS X-HSPU24	8-SLC 02 M HWH Sidelap Connector	8 in	0.47%	0%	124.070.68 kip/n	1.00
	22 pe	38/4	HIS X-HSV 24	5-BLC-D1 M HWH Bidelep Connector	8 in	0.47%	0%	124.070.65 kip/n	1.00
	22 ga	30,4	S-RT5= M9 Screw	S-SLC 02 M HWH Sidelap Connector	0 in	0.47%	0%	124,064.14 kip/n	1.01
	22 ge	38/4	S-RTS- M9 Screw	5-SLC 01 M HWH Sidelap Connector	9 in	0.4796	0%	124.064.14 kip/n	1.01
	22 ga	30/4	HIS X-BNP-19-L15	S-SLC 02 M HWH Sidelap Connector	0 in	0.47%	0%	124,073.22 kip/n	1.01
	22 ps	38/4	HIS X-BNP-19-L15	8-BLC 01 M HWH Bidelap Connector	Pin	0.4795	0%	124.013.22 kip/n	1.01
	22 ge	38/4	HIS X-HSV 24	8-BLC 02 M HWH Sidelap Connector	7 in	0.47%	0%	124.078.18 kip/n	1.01
	22 ga	30/4	HIS X-HSN 24	S-SLO 01 M HWH Sidelap Connector	7 in	0.4796	0%	104,078.18 kip/n	1.01
	22 pe	38/4	S-RTS- MD Screw	8-BLC 02 M HWH Sidelep Connector	\$ in	0.47%	0%	124,070.68 kip/n	1.01
	22 ga	36/4	S-RTS= M9 Screw	S-SLO 01 M HWH Sidelap Connector	8 in	0.4796	0%	124,070.65 kip/n	1.01
	22 ga	38/4	HIS X-8NP-19-615	S-SLC 02 M HWH Sidelap Connector	8 in	0.4795	0%	124.075.91 kip/n	1.01
	22 ga	30,4	HIS X-BNP-19-L15	S-SLC 01 M HWH Sidelap Connector	0 in	0.47%	0%	124,078,91 kip/n	1.01
	22 ga	30/4	S-RTS- M9 Sonew	S-SLC 02 M HWH Sidelap Connector	7 in	0.47%	0%	124,078.16 kip/n	1.02
	22 ge	26/4	8-RT5- 149 Screw	8-BLC D1 M HWH Sideap Connector	7 in	0.47%	0%	124.075.18 Hip/n	1.02
	22 ga	26/4	HIS X-HEN 24	S-SLC 02 M HWH Sidelep Connector	6 in	0.4796	0%	124,085 82 kip/n	1.02
	22 ge	38,4	HIS X.HSV 24	Hits #12 Drill Screw	0 in	0.47%	0%	124,064.14 kip/n	1.02
	22 ga	36/4	HIS X-HSN 24	Hits #10 Drill Screw	0 in	0.47%	0%	124,064.14 kip/n	1.02
	22 08	35/4	HIS X-HSN 24	Hits #6 Drill Screw	Pin	0.4796	0%	104.064.14 kip/n	1.02

Design Example # 1

Zone	Deck gauge	Frame fastener pattern	Framer fastener	Sidelap connector	Sidelap connector spacing	Diaphragm shear, Q	Uplift, W	Stiffness, G'	Status
1 Zone	22 ga	36/4	S-RT5+ Screw	S-SLC 02 M HWH Sidelap Connector	24 in o.c.	5498.59 plf	0.00 psi	3898.95 kip/in	ОК
Alternate 1	22 ga	36/4	Hilti X-HSN 24	S-SLC 01 M HWH Sidelap Connector	9 in o.c.	63565.05 plf	0.00 psi	124064.21 kip/in	ОК
Alternate 2	22 ga	36/4	Hilti X-HSN 24	Hilti #12 Drill Screw	9 in o.c.	63565.05 plf	0.00 psi	124064.21 kip/in	ОК
Alternate 3	22 ga	36/4	Hilti X-HSN 24	Hilti #8 Drill Screw	9 in o.c.	63565.05 plf	0.00 psi	124064.21 kip/in	ОК

6.0 DEFLECTION CALCULATION

The Diaphragm Design module allows the user to perform a simple deflection calculation of the deck diaphragm using provisions of the SDI Deck Design Manual (DDM 04). The following are the details of different parameters used in Deflection Calculation in the Diaphragm Design Module.

6.1 DEFINITIONS

Angle Area A — This is the cross-sectional area of the perimeter angle or beam and is used to calculate the Moment of Inertia, I, for a chord steel member.

 W_{wind} — The resulting wind load acting on the area in force per unit length (lb/ft).

When the Wwind is defined, the corresponding Flange and Web deflections due to wind load will be calculated.

W_{seismic} - The resulting seismic load acting on the area in force per unit length (lb/ft).

When the W_{seismic} is defined, the corresponding Flange and Web deflections due to seismic load will be calculated.

6.2 CALCULATIONS

The deck diaphragm deflection (Δ T) is made up of two components, flexural and web deflection. The flexural deflection (Δ F term) is for the perimeter steel beam flange or diaphragm chords, based on classical beam deflection equations. The web deflection (DW term) is due to the deflection of the steel deck diaphragm itself and is based on average diaphragm shear (q_{avg}) and the flexibility of the deck connections (F).

$$\Delta = \frac{5qL^4}{384EI} + \frac{qL^2}{8bG'} \qquad \Delta f = \frac{5\cdot W \cdot I^4}{384\cdot EI} \qquad \Delta w = \frac{W \cdot I^2}{8\cdot b \cdot G'}$$
$$q_{avg} = \frac{wI}{4d}$$

where:

- w = entered value from deflection calculation window (w_{wind} or $w_{seismic}$)
- L = length of diaphragm, perpendicular to deck flutes
- I = moment of inertia of the chord element
- E = is the Young's modulus for steel
- b = width of diaphragm area, parallel to deck flutes
- G' = diaphragm shear stiffness

6.0 DEFLECTION CALCULATION

6.3 DESIGN EXAMPLE

Using the Design Example #1 from the Steel Deck Design examples, see below for the deflection calculations. The building is assumed by be 500 feet long by 400 feet wide with a L2x2x1/4 perimeter angle (A=0.944 in2). Design loads are 200 plf for wind and 300 plf for seismic. The Zone 2 has been adjusted to use a 12 inch sidelap spacing to allow the design to work for the loads. All other parameters have been maintained.

А	rea: Area 1	Ту	ре		Loads (ASD)						Diaphragm Details (C	Opt	tional)			> Results			
	Zone	<u></u>		Q	w	G'	Deck Gau	ge	Patter	n	Frame Fastener 🕕		Sidelap Connection	Side	Q	w	G'		
1	Full Scale Testin	<u>~</u>		300 lb/ft	20 psf	15 kip/in	22 ga	•	36/4	•	Hilti X-HSN 24	•	S-SLC 02 M HWH Sid *	24 in	355.49 lb	83 psf	16.59 kip	۲	÷.
O 2	SDI Equations	<u>_</u>	-4/-	300 lb/ft	20 psf	15 kip/in	22 ga	•	36/4	-	Hilti X-HSN 24	•	Hilti #12 Drill Screw	12 in	355.72 lb	83 psf	17.31 kip	۲	Ê

Area Properties		10.0711	
Length		Width	
500 ft	+	400 ft	-
Deflections			
Angle Area 1	Moment of Inertia I		
0.944 in ²	10874880 in ⁴		
Wwind	Flange Deflection Δf_{wind}	Web Deflection ΔW_{wind}	Total Deflection Δ_{wind}
200 lb/ft	0.07 ft	0.08 ft	0.15 ft
Waeiamic	Flange Deflection $\Delta f_{\text{asismic}}$	Web Deflection $\Delta W_{\text{seismic}}$	Total Deflection Δ_{seismic}
300 lb/ft	0.11 ft	0.12 ft	0.23 ft

Deflection calculations are included in the design report of the detailed report.

Deflections for Design Example #1: $5 \cdot W \cdot I^4$ ∆f = SDI DDM, Fourth Edition 384·EI $\Delta w = \frac{W \cdot l^2}{8 \cdot b \cdot G'}$ SDI DDM, Fourth Edition $I = 2 \cdot A \cdot \left(\frac{b}{2}\right)^2$ SDI DDM, Fourth Edition A (in²) b (ft) E (ksi) G' (kip/in) I (ft) l (in4) 0.9 400.0 29,500.000 16.5924 500.0 10,874,880.000 **Deflections (Wind)** W (plf) ∆f (in) $\Delta w + \Delta f$ (in) ∆w (in) 200 0.8767 0.9417 1.8184 **Deflections (Seismic)** $\Delta w + \Delta f$ (in) W (plf) ∆f (in) ∆w (in) 300 1.3150 1.4125 2.7276

7.0 FASTENER ESTIMATION

The fastener estimation estimates the number of frame and sidelap fasteners needed for the project based on the design parameters for the project.

Frame Fasteners:

Number of Frame Fasteners without waste = zone area * (N_{ffpf} *100 *(100/span + 1) + 2*(span*12/ perimeter fastener spacing - 1) (100/span))/100*100)

Frame fastenings per lineal foot of support member, $N_{\rm fipr}$ is calculated based for the deck type and fastener pattern.

Note: some values of N_{ffpf} are shown, but the table does not include all values for all deck types. See the example below for a B-deck, 36/7 pattern:

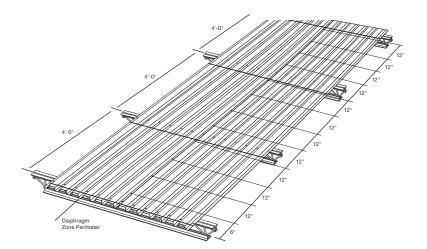
Frame fastening pattern	B & F	ві	Frame fastening pattern	N	NI	Frame fastening pattern	Floor deck 2" and 3" composite	
36/14	4	4.667	24/6	2	3	36/4	1.333	
36/11	3	3.667	24/4	1.5	2	24/3	1.5	
36/9	2.333	3				9/16" form deck		
36/7	2	2.333				30/7	2.4	
36/5	1.333	1.667				30/5	1.6	
36/4	1	1.333				30/4	1.2	
36/3	0.667	1				35/8	2.4	
30/8	2.4	3.2				35/7	2.057	
30/6	2	2.4				35/6	1.714	
30/4	1.2	1.6				35/5	1.371	
30/3	0.8	1.6					1" and 1-5/16" form deck	
24/7	2.5	3.5				32/4	1.125	
24/5	2	2.5						
24/3	1	1.5						
24/4	1.5	2						
36/7/4	1.5	2						

Table 1: Sample values for N_{ffpf}

Sample Calculation:

Known:

B-Deck, 36 7 pattern (N_{FFPF} = 2)
$$\cdot$$
 4 ft span, 12-inch PFS


$$2 \times 100 \times (\frac{100}{4} + 1) + 2 \times (\frac{100}{4} + 1) + 2 \times (\frac{4 \times 12}{12} - 1) \times \frac{100}{4}$$

= 5200 + 52 + 150 = 5402

5402/100 = 54 fasteners per 100 ft²

Then multiply based on the total square foot of deck.

Total = (1 + %waste) * Number of frame fasteners without waste

7.0 FASTENER ESTIMATION

Sidelap Fasteners:

When "number of sidelaps connections" design setting is used.

Number of sidelap fasteners = zone area * (number of sidelaps) * (1 + waste) / (sheet width*deck area)

When "sidelap connection spacing" design setting is used.

Number of sidelap fasteners = zone area * (span*12/spacing) * (1 + waste)

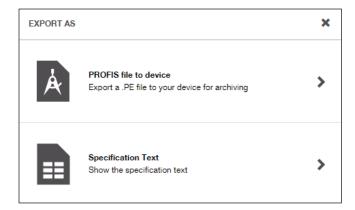
Span = average joist span for zone , ft.

Zone area = area of the zone

Waste = the percentage of waste to include in the estimation. A waste value of 5% is included in the calculations by default for the design module.

7.1 DESIGN EXAMPLE

Using the same design example from Steel Roof Deck Design Example #1 and the Deflection calculation in previous sections, a fastener estimation has been performed. The zone area for each has been estimated as 100,000 square feet with a perimeter fastener spacing of 6".


FASTENER ESTIMATION	Î			×
Estimations				
	Zone Area	Perimeter Fastener Spacing	No. of Frame Fasteners	No. of Sidelap Connections
Full Scale Testing	100,000 ft ²	6 in	22401	17501
SDI Equations	100,000 ft ²	6 in	22401	35001
		ne information provided and ass fied onsite to ensure proper qua		ntities are not guaranteed to
				Close

8.0 SPECIFICATION TEXT

PROFIS Engineering provides tools to support structural engineers in creating more accurate design documents such as specification text generated by the software. The Diaphragm Design Module also includes a user-friendly tool to help the user quickly transfer designs to CAD or BIM.

After completing your designs, use the export icon to open the specification text window. This will generate a table of all your designs for each area and zone in a convenient table format for you to quickly export. Select copy to clipboard and you will be able to import the table quickly into your design files to create an attachment schedule or notes to complete your design documents.

			thickness greater th C 01 M HWH (18 ga.		.) or Hilti S-	SLC 02 M	HWH (18 ga. to 22 ga.) fa	steners	at the spacing required	
esign I	Example	#1								
Zo	ne	Deck Gauge	Frame Faste Pattern		Frame Fasten	-	Sidelap Connector		Sidelap Connector Spacing	
Full S Tesi		22 ga	36/4	36/4		N 24	S-SLC 02 M HWH Sidelap Connector		24 in	
SDI Equations		22 ga	36/4 (914/	36/4 (914/4)		N 24	Hilti #12 Drill Screw		12 in	
esign I	Example	#2								
Zone	Deck	Gauge	Frame Fastener P	ame Fastener Pattern		astener	Sidelap Connector	Side	lap Connector Spacing	
Typical	22	ga	24/8 (610/8)		X-ENP-19		Hilti #12 Drill Screw		12 in	
oncret	e Desigi	n Example	e # 1							
Zone	Deck Gauge		rame Fastener Pattern		rame stener		Sidelap Connector		Sidelap Connector Spacing	
Zone	22 ga		36/4 Hilti		X-HSN 24		SLC 02 M HWH Sidelap Connector		24 in	

In the US: Hilti, Inc. 7250 Dallas Parkway, Suite 1000 Plano, TX 75024

Customer Service: 1-800-879-8000 en español: 1-800-879-5000 Fax: 1-800-879-7000

www.hilti.com

Hilti is an equal opportunity employer. Hilti is a registered trademark of Hilti Corp. ©Copyright 2024 by Hilti, Inc.

In Canada:

Hilti (Canada) Corporation 2201 Bristol Circle Oakville ON | L6H 0J8 Canada Customer Service: 1-800-363-4458 Fax: 1-800-363-4459

www.hilti.ca

The data contained in this literature was current as of the date of publication. Updates and changes may be made based on later testing. If verification is needed that the data is still current, please contact the Hilti Technical Support Specialists at 1-800-879-8000. All published load values contained in this literature represent the results of testing by Hilti or test organizations. Local base materials were used. Because of variations in materials, on-site testing is necessary to determine performance at any specific site. Laser beams represented by red lines in this publication. Printed in the United States.