NOTE(S):

1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.

6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPERATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.

7. ANCHOR CAPACITIES NOT CONSIDERED.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFUS FOR REQUIRED INSTALLATION INFORMATION
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
7. ANCHOR CAPACITIES NOT CONSIDERED.

CABLE TRAY CANTILEVER CONCRETE
NOTE(S):
A. THE TYPICAL SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON DESIGN
 METHODOLOGY AND GENERIC NON-PROJECT SPECIFIC ASSUMPTIONS SET FORTH IN PROFIS
 INSTALL SOFTWARE VERSION 2.23. SEE ALLOWABLE LOAD TABLE FOR MAXIMUM ALLOWABLE LOAD
 AND DIMENSION. THE ENGINEER OF RECORD SHALL EVALUATE THIS TYPICAL SUPPORT TO
 DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND
 REQUIREMENTS.
B. THE EVALUATION OF EXISTING STRUCTURE IS OUTSIDE OF THE TYPICAL DESIGN SCOPE AND
 SHALL BE PERFORMED BY THE ENGINEER OF RECORD.
C. TYPICAL SUPPORT DESIGN IS BASED ON INTERNATIONAL BUILDING CODE (IBC) 2015. SEE TABLES
 IN DETAILS FOR ALLOWABLE DESIGN LOADS (STATIC U.N.O.)
D. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRICITY CONSIDERED.
E. MAXIMUM ALLOWABLE LOAD TABLE SHOWN IN THE TYPICAL DETAILS ARE BASED ON THE VERTICAL
 LOAD ONLY. A SEPARATE ANALYSIS MUST BE PERFORMED WHEN TRANSVERSE AND
 LONGITUDINAL LOAD OCCUR SIMULTANEOUSLY WITH VERTICAL LOAD.
F. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
G. MIN. CONCRETE COMPRESSIVE STRENGTH FC=3000 PSI, MIN. CONCRETE EDGE DISTANCE = 4'
 INCHES, MIN. EFFECTIVE EMBEDMENT Hef = 2.0 INCHES
H. CONCRETE ANCHORS NOTED IN THE BILL OF MATERIAL ARE DESIGNED ONLY FOR REACTIONS AT
 BASE DUE TO VERTICAL DEAD LOAD.

<table>
<thead>
<tr>
<th>Max W, in</th>
<th>24</th>
<th>36</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOCABLE LOADS, lbs</td>
<td>205</td>
<td>115</td>
<td>60</td>
</tr>
</tbody>
</table>

C/HR
Vault/Designs/Typical_Details/ TD-MQK-158/4-F-CABLE_TRAY/ TD-P/CT-C01_C/DWG/07-P
ISOMETRIC

(Scale 1" = 1')

<table>
<thead>
<tr>
<th>ALLOWABLE LOAD TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max W, in</td>
</tr>
<tr>
<td>ALLOWABLE LOADS, Ibs</td>
</tr>
</tbody>
</table>

ELEVATION

(Scale 1" = 1')

NOTE(S):

A. THE TYPICAL SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON DESIGN METHODOLOGY AND GENERIC NON-PROJECT SPECIFIC ASSUMPTIONS SET FORTH IN PROFIS INSTALL SOFTWARE VERSION 2.23. SEE ALLOWABLE LOAD TABLE FOR MAXIMUM ALLOWABLE LOAD AND DIMENSION. THE ENGINEER OF RECORD SHALL EVALUATE THIS TYPICAL SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

B. THE EVALUATION OF EXISTING STRUCTURE IS OUTSIDE OF THE TYPICAL DESIGN SCOPE AND SHALL BE PERFORMED BY THE ENGINEER OF RECORD.

C. TYPICAL SUPPORT DESIGN IS BASED ON INTERNATIONAL BUILDING CODE (IBC) 2015. SEE TABLES IN DETAILS FOR ALLOWABLE DESIGN LOADS (STATIC U.N.O.)

D. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRICITY CONSIDERED.

E. MAXIMUM ALLOWABLE LOAD TABLE SHOWN IN THE TYPICAL DETAILS ARE BASED ON THE VERTICAL LOAD, A SEPARATE ANALYSIS MUST BE PERFORMED WHEN TRANSVERSE AND LONGITUDINAL LOAD OCCUR SIMULTANEOUSLY WITH VERTICAL LOAD.

F. REFER TO COMPONENT MANUFACTURER’S IFU’s FOR REQUIRED INSTALLATION INFORMATION.

G. MIN. STEEL BASE THICKNESS SHALL BE 5/16" MIN EDGE DISTANCE SHALL BE 3/8" MIN YIELD STRENGTH OF STEEL SHALL BE Fy=36ksi

<table>
<thead>
<tr>
<th>TABLE A</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQK-158/4-F-XX ITEM NO.</td>
</tr>
<tr>
<td>2248531</td>
</tr>
<tr>
<td>2248530</td>
</tr>
<tr>
<td>2248532</td>
</tr>
</tbody>
</table>
TABLE-A

<table>
<thead>
<tr>
<th>MQK-158/4-D-XX ITEM NO.</th>
<th>MQK-158/4-D-XX DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2248533</td>
<td>MQK-158/4-D-F-24</td>
</tr>
<tr>
<td>2248534</td>
<td>MQK-158/4-D-F-36</td>
</tr>
<tr>
<td>2248535</td>
<td>MQK-158/4-D-F-48</td>
</tr>
</tbody>
</table>

NOTE(S):
A. THE TYPICAL SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON DESIGN METHODOLOGY AND GENERIC NON-PROJECT SPECIFIC ASSUMPTIONS SET FORTH IN PROFIS INSTALL SOFTWARE VERSION 2.23. SEE ALLOWABLE LOAD TABLE FOR MAXIMUM ALLOWABLE LOAD AND DIMENSION. THE ENGINEER OF RECORD SHALL EVALUATE THIS TYPICAL SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

ELEVATION
(Scale 1"=1'-0")

ISOMETRIC
(Scale 1"=1'-0")

ALLOWABLE LOAD TABLE

<table>
<thead>
<tr>
<th>Max W, in</th>
<th>24</th>
<th>36</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOWABLE LOADS, lbs</td>
<td>619</td>
<td>375</td>
<td>256</td>
</tr>
</tbody>
</table>

WARNING: All testing and design criteria supplied by customer is assumed accurate. Only the selected Design Assumptions were considered, and must be verified by the responsible Engineer of Record (EOR).

The basis of Hilti component and connection design is the published data in the current Hilti Technical Guide, including material and cross-section properties, allowable load values, factors of safety, methods of calculation, and linking factors. The EOR must verify suitability for any specific application. Hilti does not assume responsibility for any specific design or construction details. Hilti recommends that the end user review the design criteria and associated engineering manuals before installation.

Hilti is not responsible for any injury to persons or property, or for any damage to equipment or material sustained as a result of the improper use of Hilti products. Hilti recommends that the end user review the design criteria and associated engineering manuals before installation.
Table A

<table>
<thead>
<tr>
<th>Description</th>
<th>Item No.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQK-158/4-D-F-XX (SEE TABLE A)</td>
<td>VARIES</td>
<td>1</td>
</tr>
<tr>
<td>CHANNEL END CAP MEK RED</td>
<td>244886</td>
<td>2</td>
</tr>
<tr>
<td>THREADED STUD X-BT-M10/15 SN 8 (SEE NOTE G)</td>
<td>219340</td>
<td>4</td>
</tr>
</tbody>
</table>

Allowable Loads Table

<table>
<thead>
<tr>
<th>Max W, in</th>
<th>ALLOCABLE LOADS, lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>345</td>
</tr>
<tr>
<td>36</td>
<td>220</td>
</tr>
<tr>
<td>48</td>
<td>155</td>
</tr>
</tbody>
</table>

NOTE(S):

A. THE TYPICAL SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON DESIGN METHODOLOGY AND GENERIC NON-PROJECT SPECIFIC ASSUMPTIONS SET FORTH IN PROFIS INSTALL SOFTWARE VERSION 2.23. SEE ALLOWABLE LOAD TABLE FOR MAXIMUM ALLOWABLE LOAD AND DIMENSION. THE ENGINEER OF RECORD SHALL EVALUATE THIS TYPICAL SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

B. THE EVALUATION OF EXISTING STRUCTURE IS OUTSIDE OF THE TYPICAL DESIGN SCOPE AND SHALL BE PERFORMED BY THE ENGINEER OF RECORD.

C. TYPICAL SUPPORT DESIGN IS BASED ON INTERNATIONAL BUILDING CODE (IBC) 2015. SEE TABLES IN DETAILS FOR ALLOWABLE DESIGN LOADS (STATIC U.N.O.)

D. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRICITY CONSIDERED.

E. MAXIMUM ALLOWABLE LOAD TABLE SHOWN IN THE TYPICAL DETAILS ARE BASED ON THE VERTICAL LOAD.

F. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.

G. MIN. STEEL BASE THICKNESS SHALL BE 5/16" MIN EDGE DISTANCE SHALL BE 3/8", MIN YIELD STRENGTH OF STEEL SHALL BE Fy=36ksi

Technical Details

Typical Details

- **Typical Detail Name:** TD-P/CT-C04-S
- **Typical Detail Description:** MQK-158/4-D-F CANTILEVER STEEL
- **Typical Detail Number:** HILTI TD-P/CT-C04-S

Revision History

- **Date:** 07/28/2020
- **Comment:** ISSUE FOR USE

All testing and design criteria supplied by customer is assumed accurate. Only the selected Design Assumptions were considered, and must be verified by the responsible Engineer of Record (EOR). The basis of the component and connection design is the published data in the current Hilti Technical Guide, including material and cross-section properties, allowable load values, factors of safety, methods of calculation, and loading factors. The EOR must verify suitability for any specific application. Hilti reserves the right to modify the standard component or construction procedure and associated reaction loads. Modification to components and/or design may alter performance and must be evaluated by the EOR.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
7. ANCHOR CAPACITIES NOT CONSIDERED.

REVISION HISTORY
<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NOT FOR CONSTRUCTION</td>
<td>10/06/2017</td>
</tr>
</tbody>
</table>
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT. NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.

REVISION HISTORY

TYPICAL DETAILS
TD-CT-GP111-S

TYPICALS

PAPER SIZE: ANSI A

PROJECT NUMBER:

BAP

CHECKED: BAP

DESIGNED: AIM

INITIALS

C:\Hil1 Vault\Projects\10000 Internal Projects\10017 Typicals\CABLE TRAY\TD-CT-GP111-S.dgn
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFUS FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPERATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
7. ANCHOR CAPACITIES NOT CONSIDERED.
CABLE TRAY, CLIPS, HEXBOLTS (BY OTHERS)

ISOMETRIC

- **Scale:** 5/8"=1'-0"

Qty.*

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Item No.*</th>
<th>Piece Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BRACKET MIC-C90-DH-2000</td>
<td>2174682</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GIRDER MIQ-9021</td>
<td>2119866</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MIQM 3/8" WING NUT</td>
<td>2183584</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CONNECTOR MIC-90-LH</td>
<td>2048107</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EASYHAND SCREW MIA-EH90</td>
<td>304887</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TOOTHED PLATE MIA-TP</td>
<td>305707</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PREVAIL TORQUE HEX HEAD NUT M12-F-SL-WS 3/4"</td>
<td>382857</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>END CAP - MIA-EC-90</td>
<td>423077</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>VARES USE APPROPRIATE HILTI ANCHOR</td>
<td>VARES</td>
<td></td>
</tr>
</tbody>
</table>

NOTE(S):

1. **THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI -PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.**
2. **ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.**
3. **DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.).**
4. **REFER TO COMPONENT MANUFACTURER’S IFUS FOR REQUIRED INSTALLATION INFORMATION.**
5. **FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.**
6. **CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPERATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.**
7. **ANCHOR CAPACITIES NOT CONSIDERED.**

REVISION HISTORY

<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NOT FOR CONSTRUCTION</td>
<td>10/06/2017</td>
</tr>
</tbody>
</table>
NOTE(S):
A. THE TYPICAL SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON DESIGN METHODOLOGY AND GENERIC NON-PROJECT SPECIFIC ASSUMPTIONS SET FORTH IN PROPS INSTALL SOFTWARE VERSION 2.23. THE ENGINEER OF RECORD SHALL EVALUATE THIS TYPICAL SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
B. THE EVALUATION OF EXISTING STRUCTURE IS OUTSIDE THE TYPICAL DESIGN SCOPE AND SHALL BE PERFORMED BY THE ENGINEER OF RECORD.
C. TYPICAL SUPPORT DESIGN IS BASED ON INTERNATIONAL BUILDING CODE (IBC) 2015. SEE TABLES IN DETAILS FOR ALLOWABLE DESIGN LOADS (STATIC U.N.O.); LATERAL LOADS CALCULATED AS 30% OF DEAD LOAD.
D. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRICITY CONSIDERED.
E. MAXIMUM ALLOWABLE LOAD TABLE SHOWN IN THE TYPICAL DETAILS ARE BASED ON THE COMBINATION OF VERTICAL LOAD WITH TRANSVERSE LOAD OR VERTICAL LOAD WITH LONGITUDINAL LOAD. A SEPARATE ANALYSIS MUST BE PERFORMED WHEN TRANSVERSE AND LONGITUDINAL LOAD OCCUR SIMULTANEOUSLY.
F. REFER TO COMPONENT MANUFACTURER’S FOR REQUIRED INSTALLATION INFORMATION.
G. MIN. CONCRETE COMpressive STRENGTH Fc=3000 PSI, MIN. CONCRETE EDGE DISTANCE = 4.0 INCHES. MIN. EFFECTIVE EMBEDMENT Heff = 2.0 INCHES.
H. CONCRETE ANCHORS NOTED IN THE BILL OF MATERIAL ARE DESIGNED ONLY FOR REACTIONS AT BASE PLATE DUE TO VERTICAL DEAD LOAD.

<table>
<thead>
<tr>
<th>ALLOWABLE LOADS, lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max H, in</td>
</tr>
<tr>
<td>Vertical</td>
</tr>
<tr>
<td>Transverse</td>
</tr>
<tr>
<td>Longitudinal</td>
</tr>
</tbody>
</table>

TYPICAL DETAILS

TYPICAL DETAIL NAME:

MQK-158/4-F STANCHION CONCRETE

TYPICAL DETAIL DESCRIPTION:

MQK-158/4-F-XX STANCHION CONCRETE

REVISION HISTORY

07/28/2020 ISSUE FOR USE

TYPICAL DETAIL NUMBER:

TD-P-PS05-C

PAPER SIZE:

ANSI A

DETAIL SHEET:

TD-P-PS05-C

DRAWN:

JRS

CHECKED:

GAB

DESIGNED:

ISE

REVIEWED:

ISE
TABLE A

<table>
<thead>
<tr>
<th>MQK-158/4-XX ITEM NO.</th>
<th>MQK-158/4-XX DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2248531</td>
<td>MQK-158/4-F.24</td>
</tr>
<tr>
<td>2248530</td>
<td>MQK-158/4-F.36</td>
</tr>
<tr>
<td>2248532</td>
<td>MQK-158/4-F.48</td>
</tr>
</tbody>
</table>

NOTE(S):

A. THE TYPICAL SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON DESIGN METHODOLOGY AND GENERIC NON-PROJECT SPECIFIC ASSUMPTIONS SET FORTH IN PROFIS INSTALL SOFTWARE VERSION 2.23. SEE ALLOWABLE LOAD TABLE FOR MAXIMUM ALLOWABLE LOAD AND DIMENSION. THE ENGINEER OF RECORD SHALL EVALUATE THIS TYPICAL SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

B. THE EVALUATION OF EXISTING STRUCTURE IS OUTSIDE OF THE TYPICAL DESIGN SCOPE AND SHALL BE PERFORMED BY THE ENGINEER OF RECORD.

C. TYPICAL SUPPORT DESIGN IS BASED ON INTERNATIONAL BUILDING CODE (IBC) 2015. SEE TABLES IN DETAILS FOR ALLOWABLE LOAD DESIGNS (STATIC U.N.O.) LATERAL LOADS CALCULATED AT 30% OF DEAD LOAD.

D. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRICITY CONSIDERED.

E. MAXIMUM ALLOWABLE LOAD TABLE SHOWN IN THE TYPICAL DETAILS ARE BASED ON THE COMBINATION OF VERTICAL LOAD WITH TRANSVERSE LOAD OR VERTICAL LOAD WITH LONGITUDINAL LOAD. A SEPARATE ANALYSIS MUST BE PERFORMED WHEN TRANSVERSE AND LONGITUDINAL LOAD OCCURS SIMULTANEOUSLY. REFER TO COMPONENT MANUFACTURER’S IFU’s FOR REQUIRED INSTALLATION INFORMATION.

F. REFER TO COMPONENT MANUFACTURER’S FOR REQUIRED INSTALLATION INFORMATION.

G. MIN. STEEL BASE THICKNESS SHALL BE 5/16 INCH. MIN EDGE DISTANCE SHALL BE 3/8 INCH. MIN YIELD STRENGTH OF STEEL SHALL BE Fy=36KSI
TABLE A

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQK-158/4-D-XX</td>
<td>MQK-158/4-D-XX DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>2248533</td>
<td>MQK-158/4-D-24</td>
<td></td>
</tr>
<tr>
<td>2248534</td>
<td>MQK-158/4-D-36</td>
<td></td>
</tr>
<tr>
<td>2248535</td>
<td>MQK-158/4-D-48</td>
<td></td>
</tr>
</tbody>
</table>

NOTE(S):

A. THE TYPICAL SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON DESIGN METHODOLOGY AND GENERIC NON-PROJECT SPECIFIC ASSUMPTIONS SET FORTH IN PROFIS INSTALL SOFTWARE VERSION 2.23. THE ENGINEER OF RECORD SHALL EVALUATE THIS TYPICAL SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

B. THE EVALUATION OF EXISTING STRUCTURE IS OUTSIDE OF THE TYPICAL DESIGN SCOPE AND SHALL BE PERFORMED BY THE ENGINEER OF RECORD.

C. TYPICAL SUPPORT DESIGN IS BASED ON INTERNATIONAL BUILDING CODE (IBC) 2015. SEE TABLES IN DETAILS FOR ALLOWABLE DESIGN LOADS (STATIC U.N.O.); LATERAL LOADS CALCULATED AS 30% OF DEAD LOAD.

D. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRICITY CONSIDERED.

E. MAXIMUM ALLOWABLE LOAD TABLE SHOWN IN THE TYPICAL DETAILS ARE BASED ON THE COMBINATION OF VERTICAL LOAD WITH TRANSVERSE LOAD OR VERTICAL LOAD WITH LONGITUDINAL LOAD. A SEPARATE ANALYSIS MUST BE PERFORMED WHEN TRANSVERSE AND LONGITUDINAL LOAD OCCURS SIMULTANEOUSLY.

F. REFER TO COMPONENT MANUFACTURER’S FOR REQUIRED INSTALLATION INFORMATION.

G. MIN. CONCRETE COMPRESSIVE STRENGTH FC=3000 PSI, MIN. CONCRETE EDGE DISTANCE = 4.0 INCHES, MIN. EFFECTIVE EMBEDMENT Heff = 2.0 INCHES.

H. CONCRETE ANCHORS NOTED IN THE BILL OF MATERIAL ARE DESIGNED ONLY FOR WIND LATERAL LOADING. EOR TO VERIFY ADEQUACY OF ANCHOR WHEN TYPICAL IS BEING USED FOR SEISMIC LATERAL LOADING.
ISOMETRIC

 SCALE: 1" = 1'-0"

<table>
<thead>
<tr>
<th>ALLOCABLE LOADING, lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
</tr>
<tr>
<td>425</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>250</td>
</tr>
</tbody>
</table>

ELEVATION

 SCALE: 1" = 1'-0"

TABLE A

<table>
<thead>
<tr>
<th>MQK-158/4-D-F-XX ITEM NO.</th>
<th>MQK-158/4-D-F-XX DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2248533</td>
<td>MQK-158/4-D-F-24</td>
</tr>
<tr>
<td>2248534</td>
<td>MQK-158/4-D-F-36</td>
</tr>
<tr>
<td>2248535</td>
<td>MQK-158/4-D-F-48</td>
</tr>
</tbody>
</table>

NOTE(S):

A. THE TYPICAL SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON DESIGN

B. THE EVALUATION OF EXISTING STRUCTURE IS OUTSIDE OF THE TYPICAL DESIGN SCOPE AND SHALL BE PERFORMED BY THE ENGINEER OF RECORD.

C. TYPICAL SUPPORT DESIGN IS BASED ON INTERNATIONAL BUILDING CODE (IBC) 2016. SEE TABLES IN DETAILS FOR ALLOWABLE DESIGN LOADS (STATIC U.N.O.) C. LATERAL LOADS CALCULATED AT 30% OF DEAD LOAD.

D. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRICITY CONSIDERED.

E. MAXIMUM ALLOWABLE LOAD TABLE SHOWN IN THE TYPICAL DETAILS ARE BASED ON THE COMBINATION OF VERTICAL LOAD WITH TRANSVERSE LOAD OR VERTICAL LOAD WITH LONGITUDINAL LOAD. A SEPARATE ANALYSIS MUST BE PERFORMED WHEN TRANSVERSE AND LONGITUDINAL LOAD OCCURS SIMULTANEOUSLY.

F. REFER TO COMPONENT MANUFACTURER’S IFUs FOR REQUIRED INSTALLATION INFORMATION.

G. MIN. STEEL BASE THICKNESS SHALL BE 5/16 INCH. MIN EDGE DISTANCE SHALL BE 3/8 INCH. MIN YIELD STRENGTH OF STEEL SHALL BE F=36KSI

REVISION HISTORY

DATE: 07/28/2020 ISSUE FOR USE

TYPICAL DETAIL NAME:

TYPICAL DETAILS

TD-P-PS08-S

TYPICAL DETAIL DESCRIPTION:

MQK-158/D-F STANCHION STEEL

PAPER SIZE:

ANSI A

TYPICAL DETAIL NUMBER:

TD-P-PS08-S

DRAWN:

JRS

CHECKED:

GAB

DESIGNED:

ISE

REVIEWSED:

ISE

NOTE:

The testing and design criteria supplied by customer is assumed accurate. Only the elevated Design Assumptions were considered, and must be verified by the responsible Engineer of Record (EOR). The basis and pertinent information is the published data of the current IFU. The data and pertinent information is the published data of the current IFU. The data and pertinent information is the published data of the current IFU.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
7. ANCHOR CAPACITIES NOT CONSIDERED.

REVISION HISTORY

PROJECT NAME:

TYPICAL DETAILS

TD-CT-TR121-C

PROJECT DESCRIPTION:

CABLE TRAY TRAPEZE CONCRETE

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NOT FOR CONSTRUCTION</td>
<td>10/06/2017</td>
</tr>
</tbody>
</table>

PAPER SIZE:

ANSI A

PROJECT NUMBER:

10017 - CT - 1

<table>
<thead>
<tr>
<th>Piece Mark</th>
<th>Item No.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2171482</td>
<td>MIC-C90-0H WELDED BRACKET</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2119866</td>
<td>GIRDER MQC-90</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2140257</td>
<td>CONNECTOR MQC-90-MI</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2183584</td>
<td>HQM 3/8" WING NUT</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>VARIES</td>
<td>USE APPROPRIATE HILTI ANCHOR</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>432077</td>
<td>END CAP - MIA-EC-90</td>
<td>2</td>
</tr>
</tbody>
</table>

Max W, in
- Vertical: 48
- Transverse: 2800
- Longitudinal: 400

Max H, in
- Vertical: 36
- Transverse: 250
- Longitudinal: 440

LRFD, lbs
- Vertical: 1900
- Transverse: 160
- Longitudinal: 440

ASD, lbs
- Vertical: 1900
- Transverse: 160
- Longitudinal: 440
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
7. ANCHOR CAPACITIES NOT CONSIDERED.

REVISION HISTORY

<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NOT FOR CONSTRUCTION</td>
<td>10/06/2017</td>
</tr>
</tbody>
</table>