NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
7. ANCHOR CAPACITIES NOT CONSIDERED.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE, SEE TABLE FOR DESIGN LOADS (STATIC U.N.G.)
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
7. ANCHOR CAPACITIES NOT CONSIDERED.

REVISION HISTORY

PROJECT NAME:
TYPICAL DETAILS
TD-CT-C108-C

PROJECT DESCRIPTION:
CABLE TRAY CANTILEVER CONCRETE

PAPER SIZE: ANSI A

C:\Hilti VaM\Projects\10000 Internal Projects\10017 Tisches\CABLE TRAY\TD-CT-C108-C.DWG
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES ShOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL LOADS. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.

REVISION HISTORY

PROJECT NAME:

TYPICAL DETAILS
TD-CT-GP110-S

PROJECT DESCRIPTION:
CABLE TRAY GOALPOST STEEL

HILTI

DRAWN: IDP
CHECKED:
DESIGNED:
REVIEWED:

GAB:

PAPER SIZE:
ANSI A

PROJECT NUMBER:
10017 - CT - 1

C:\Hilti Vault\Designs\Projects\10000 Internal Projects\10017-Typical\CABLE TRAY\TD-CT-GP110-S-01.png
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.

2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.

3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)

4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION

5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.

6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.

7. ANCHOR CAPACITIES NOT CONSIDERED.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT. NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFU'S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.

REVISION HISTORY

TYPICAL DETAILS
TD-CT-GP111-S

END CAP - MSA-EC-90
GIRDER MQ-90
GIRDER MQ-90
CONNECTOR MQC-590-XP - SEE TABLE
MQC-590-HT
Beam clamp M1-GGC M12

MIQC-590-XP BEAM WIDTH TABLE

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>2120271</td>
<td>3 - 6.5</td>
</tr>
<tr>
<td>2120273</td>
<td>6.5 - 9.3</td>
</tr>
<tr>
<td>2120275</td>
<td>9.3 - 12</td>
</tr>
</tbody>
</table>

HILTI

TYPICALS

PROJECT NUMBER:

PAPER SIZE: ANSI A

DRAWN: CHECKED: DESIGNED: REVIEWED:

BAP: BAP: AIM: INITIALS

PROJECT: 0000 - JOB: 00 - SHEET: 1

C:\Hilti\Vault\Designs\Projects\10000 Internal Projects\10017-Typicals\CABLE TRAY\TD-CT-GP111-S
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE, SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER'S IFUS FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
7. ANCHOR CAPACITIES NOT CONSIDERED.
Isometric View

Scale: 5/8" = 1'-0"

Description: CABLE TRAY, CLIPS, HEXBOLTS (BY OTHERS)

<table>
<thead>
<tr>
<th>Item No.*</th>
<th>Description</th>
<th>Qty.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRACKET MIC-C90-DH-200</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GIRDER MIQ-90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MIQM 3/8" WING NUT</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CONNECTOR MIC-90-LH</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EASYHAND SCREW MIA-EH90</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOOTHED PLATE MIA-TP</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PREVAIL TORQUE HEX HEAD NUT M12-F-SL-WS 3/4"</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>END CAP - MIA-EC-90</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>USE APPROPRIATE HILTI ANCHOR</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. This drawing represents a common configuration for this application. The cable tray (CT) support is load rated and dimensionally limited based on Hilti-published static load data and design methodologies, and generic, non-project specific design assumptions. The engineering of record shall evaluate this support to determine its suitability for the actual, project specific design criteria and requirements.

2. All loads assumed to act on the support, no eccentric loads included. CT connection hardware must be checked separately.

3. Design assumptions: IBC 2012 Building Code; see table for design loads (Static U.N.O.)

4. Refer to component manufacturer’s IFUs for required installation information.

5. For applicable concrete or steel anchor design contact Hilti or the project site engineer of record.

6. Capabilities shown above are based on vertical combined with transverse and vertical combined with longitudinal. A separate analysis must be performed if vertical, transverse and longitudinal loads occur simultaneously.

7. Anchor capacities not considered.

Project Details

Typical Details

TD-CT-TP112-C

Description: Cable Tray T-Post Concrete

Design Assumptions:

- **LRFD, lbs**:
 - Vertical: 4000
 - Transverse: 700
 - Longitudinal: 750

- **ASD, lbs**:
 - Vertical: 4000
 - Transverse: 400
 - Longitudinal: 420

Technical Notes:

- All loading and design criteria supplied by the customer is assumed accurate. Only the stated design assumptions were considered, and must be verified by the responsible Engineer of Record (EOR).

- The Hilti component and connection design is based on the current Hilti Technical Guide, including material and cross-section properties, allowable load values, factors of safety, methods of calculation, and working loads. The EOR must verify suitability for any specific applications, and the Hilti Technical Guide may not be applicable.

- The EOR must verify the suitability of the supporting structure to receive the shown configuration and associated reaction loads.

- Modification to components and/or design may alter performance and must be evaluated by the EOR.
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
7. ANCHOR CAPACITIES NOT CONSIDERED.

REVISION HISTORY

PROJECT NAME: CABLE TRAY TRAPEZE CONCRETE

TYPICAL DETAILS
TD-CT-TR121-C

CABLE TRAY TRAPEZE CONCRETE

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC-C90-DH WELDED BRACKET</td>
<td>2</td>
</tr>
<tr>
<td>GIRDER MIQ-90</td>
<td>1</td>
</tr>
<tr>
<td>CONNECTOR MIQC-90-MI</td>
<td>2</td>
</tr>
<tr>
<td>HMQ 3/8" WING NUT</td>
<td>2</td>
</tr>
<tr>
<td>USE APPROPRIATE HILTI ANCHOR</td>
<td>8</td>
</tr>
<tr>
<td>END CAP - MIA-EC-90</td>
<td>2</td>
</tr>
</tbody>
</table>
NOTE(S):
1. THIS DRAWING REPRESENTS A COMMON CONFIGURATION FOR THIS APPLICATION. THE CABLE TRAY (CT) SUPPORT IS LOAD RATED AND DIMENSIONALLY LIMITED BASED ON HILTI-PUBLISHED STATIC LOAD DATA AND DESIGN METHODOLOGIES, AND GENERIC, NON-PROJECT SPECIFIC DESIGN ASSUMPTIONS. THE ENGINEERING OF RECORD SHALL EVALUATE THIS SUPPORT TO DETERMINE ITS SUITABILITY FOR THE ACTUAL, PROJECT SPECIFIC DESIGN CRITERIA AND REQUIREMENTS.
2. ALL LOADS ASSUMED TO ACT ON THE SUPPORT, NO ECCENTRIC LOADS INCLUDED. CT CONNECTION HARDWARE MUST BE CHECKED SEPARATELY.
3. DESIGN ASSUMPTIONS: IBC 2012 BUILDING CODE; SEE TABLE FOR DESIGN LOADS (STATIC U.N.O.)
4. REFER TO COMPONENT MANUFACTURER’S IFU’S FOR REQUIRED INSTALLATION INFORMATION.
5. FOR APPLICABLE CONCRETE OR STEEL ANCHOR DESIGN CONTACT HILTI OR THE PROJECT SITE ENGINEER OF RECORD.
6. CAPACITIES SHOWN ABOVE ARE BASED ON VERTICAL COMBINED WITH TRANSVERSE AND VERTICAL COMBINED WITH LONGITUDINAL. A SEPARATE ANALYSIS MUST BE PERFORMED IF VERTICAL, TRANSVERSE AND LONGITUDINAL LOADS OCCUR SIMULTANEOUSLY.
7. ANCHOR CAPACITIES NOT CONSIDERED.