

The following excerpt are pages from the North American

Product Technical Guide Volume 3: Modular Support Systems

Technical Guide, Edition 1.

Please refer to the publication in its entirety for complete details on this product including load values, approvals/listings, general suitability, finishes, quality, etc.

To consult directly with a team member regarding our modular support system products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or HNATechnicalServices@hilti.com

CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

3.0 MODULAR SUPPORT SYSTEM

3.2.8 MT CLAMPS AND CHANNEL TIES

MT-CT-T

Description

Flat plate for channel-to-channel connections.

Material Specifications

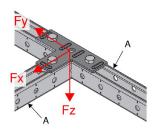
Standard ¹	Grade ¹	F _y , ksi (MPa)	F _u , ksi (MPa)
GB/T 700	Q235 B	34.08 (235)	53.66 (370)

Mechanical properties of GB/T 700 Grade Q235 B meet or exceed the mechanical properties of ASTM A1011 SS Grade 33.

Corrosion Protection

Electro-Galvanized (EG)

MT-CT-T


Hot-Dipped Galvanized (HDG)

MT-CT-T OC

Ordering Information

Description	Weight Per Piece lbs (kg)	Quantity Piece(s)	Item No.
MT-CT-T	0.59 (0.27)	12	2322407
MT-CT-T OC	0.59 (0.27)	12	2322411

Figure 96 - Single Plate Connection

A. MT-30/50/60/40D

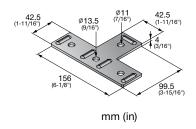
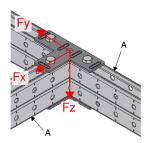


Table 241 - Allowable Strength Design (ASD) Load Data^{1,2,3}

F _x	F _y	F _z
lb (kN)	lb (kN)	lb (kN)
505	990	495
(2.25)	(4.42)	(2.22)

- 1. Minimum safety factor, Ω , for tabulated values is 2.65.
- Multiply tabulated values by 1.5 to obtain minimum Load and Resistance Factor Design (LRFD) values.
- 3. See Figure 96.


Table 242 - Limit State Design (LSD) Load Data^{1,2}

	F _x lb (kN)	F _y lb (kN)	F _z lb (kN)	
	700	1,290	640	
	(3.13)	(5.75)	(2.86)	

- Maximum resistance factor, φ, for tabulated values is 0.50.
- 2. See Figure 96.

Figure 97 - Double Plate Connection

A. MT-40D

Table 243 - Allowable Strength Design (ASD) Load Data 1,2,3,4

F _x	F	F _z
lb (kN)	lb (kN)	lb (kN)
1,010	1,845	1,615
(4.50)	(8.22)	(7.19)

- . Minimum safety factor, Ω , for tabulated values is 2.65.
- Multiply tabulated values by 1.5 to obtain minimum Load and Resistance Factor Design (LRFD) values.
- 3. Tabulated values are based on plates being installed in pairs.
- 1. See Figure 97.

Table 244 - Limit State Design (LSD) Load Data^{1,2,3}

	_	
F _x	F _y	F _z
lb (kN)	lb (kN)	lb (kN)
1,405	2,400	2,100
(6.26)	(10.69)	(9.35)

- 1. Maximum resistance factor, φ, for tabulated values is 0.55.
- Tabulated values are based on plates being installed in pairs.
- 3. See Figure 97.

2023